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Abstract In this paper, a common fixed point theorem for contractive type fuzzy mappings in a

complete metric space is proved due to Cho (2005) [1]. Further an example is given for the results

of Cho (2005) [1, Theorem 3.1] and Park and Jeong (1997) [2, Theorem 3.2] which are not satisfying

the condition ‘‘for all x; y 2 X’’ and have a fixed point.
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1. Introduction and preliminaries

Let ðX; dÞ be a metric space. Fixed points for multivalued

mapping T : X! 2X are defined as x 2 Tx for some x 2 X.

Let CBðXÞ denote the set of all nonempty closed and bounded
subsets of X. A multivalued mapping T : X! CBðXÞ is called a
contraction mapping if there exists q 2 ð0; 1Þ such that

HðTðxÞ;TðyÞÞ 6 qdðx; yÞ forall x; y 2 X;

where the Hausdroff metric HðA;BÞ on CBðXÞ is given by

HðA;BÞ ¼ maxfsup
a2A

dða;BÞ; sup
b2B

dðA; bÞg;

where dðx;CÞ ¼ inf
y2C

dðx; yÞ

for any nonempty closed and bounded subsets A;B and C of X
and for any point x 2 X.

A fuzzy set in X is a function with domain X and values in
[0,1]. If A is a fuzzy set and x 2 X, then the function values
AðxÞ are called the grade of membership of x in A. Let FðXÞ
be the collection of all fuzzy sets on X and let
aA ¼ fx 2 X : AðxÞP ag denote the a-cut of A 2 FðXÞ.The
zero-cut of A is defined as the closure of the set

fx 2 X : AðxÞ > 0g.
A mapping F from X to FðYÞ is called a fuzzy mapping if

for each x 2 X;FðxÞ is a fuzzy set on Y and FðxÞðyÞ denotes the
degree of membership of y in FðxÞ. Let X be a metric linear
space and let WðXÞ denote the set of all fuzzy sets on X such
that each of its a-cut is a nonempty compact and convex subset
(approximate quantity)of X. A fuzzy mapping F from X to

WðXÞ is called a fuzzy contraction mapping if there exists
q 2 ð0; 1Þ such that

DðFðxÞ;FðyÞÞ 6 qdðx; yÞ for each x; y 2 X;

where DðA;BÞ ¼ sup
a
HðaA; aBÞ

Define paðA;BÞ ¼ infx2aA;y2aBdðx; yÞ and
pðA;BÞ = supapa ðA;BÞ for any fuzzy sets A;B 2 WðXÞ.

It is known that pa is non-decreasing function of a.
Heilpern [3] first introduced the concept of fuzzy mappings

and proved a fixed point theorem for fuzzy contraction
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mappings which is a fuzzy analogue of the fixed point theorem
of Nadler [4]. Bose and Sahani [5] extended the Heilpern’s
result for a pair of generalized fuzzy contraction mappings.

Marudai and Srinivasan [6] generalized the Heilpern’s result
using the Nadler’s result. They also obtained a nontrivial gen-
eralization of the Nadler’s fixed point theorem for fuzzy con-

traction mappings under weaker settings. Further Vijayaraju
and Marudai [7] generalize the result of Bose and Mukerjee
[8] for contractive type fuzzy mappings in complete metric

spaces. The significance of these results is assuming ‘‘each of
its a-cut of fuzzy set is nonempty closed and bounded subset
of X’’ instead of approximate quantity of X’’. Akbar Azam
and Muhammad Arshad [9] proved the result of Vijayaraju

and Marudai [7, Theorem 3.1] is incomplete and corrected
the proof in right direction. In this paper a common fixed point
theorem for contractive type fuzzy mappings in complete met-

ric space due to Cho [1] is proved by using the concept of
Vijayaraju and Marudai [7]. Further an example is given for
the results of Cho [1, Theorem 3.1] and Park and Jeong [2,

Theorem 3.2] which are not satisfying the condition ‘‘for all
x; y 2 X’’ and have a fixed point.

2. Main results

The following lemma due to Nadler [4] is the main key of our
result.

Lemma 2.1 [4]. Let ðX; dÞ be a metric space and A;B 2 CBðXÞ,
then for each a 2 A; k > 0 there exists an element b 2 B such
that dða; bÞ 6 HðA;BÞ þ k.

Cho [1] and Park and Jeong [2] proved some fixed point
theorems for fuzzy mappings from X to WðXÞ under the con-
tractive type conditions in complete metric space. The follow-

ing example shows that the condition ‘‘for all x; y 2 X’’ fails
for the results [1, Theorem 3.1] and [2, Theorem 3.2].

Theorem 2.2 [1]. Let F;G : X!WðXÞ be fuzzy mappings

satisfying the following condition: There exists k 2 ð0; 1Þ such
that

DðFx;GyÞ 6 kp
2
fpðx;FxÞpðy;GyÞ þ pðy;GyÞdðx; yÞg

1
2 ð�Þ

for all x; y 2 X. Then F and G have a common fixed point.

Theorem 2.3 [2]. Let F;G : X!WðXÞ be fuzzy mappings sat-
isfying the following condition: There exists k 2 ð0; 1Þ such that

DðFx;GyÞ 6 kfpðx;FxÞpðy;GyÞg
1
2 ð��Þ

for all x; y 2 X. Then F and G have a common fixed point.

Example 2.4. LetX ¼ ½0; 1�.Forx; y 2 X; dðx; yÞ ¼ jx� yj; a 2
ð0; 1�. Define F;G : X!WðXÞ by

Fð0ÞðzÞ ¼
1; z¼ 0
1
2
; 0< z6 1=50

0; z> 1=50

8><
>:

Gð0ÞðzÞ ¼
1; z¼ 0

1=4; 0< z6 1=100

0; z> 1=100

8><
>:

FðxÞðzÞ¼

a; 06 z6 x=25

a
2
; x=25< z6x=10

0; z> x=10

8>>><
>>>:

GðxÞðzÞ¼

a; 06 z6 x=20

a
2
; x=20< z6x=10

0; z> x=10

8>>><
>>>:

Here 1FðxÞ ¼ 1GðxÞ ¼ f0g and aFðxÞ ¼ ½0; x=25� and aGðxÞ ¼
½0; x=20�

DðFðxÞ;GðyÞÞ ¼ supaHðaFðxÞ; aGðyÞÞ ¼ jx=20� y=25j

6
kp
2
½jx� x=25j:jy� y=20j þ jy� y=20jjx� yj�

1
2

For x ¼ y;F and G satisfy all the conditions of Theorem 2.2
and 0 is the common fixed point of F and G.

For x – y, the condition ð�Þ fails for taking the values

x ¼ 1; y ¼ 0.

Similarly the condition ð��Þ of Theorem 2.3 fails also.

From the above example, we observe that Theorem 2.2

holds for assuming the condition for all x 2 X and for all non-
zero values of y in X and Theorem 2.3 holds for assuming the
condition for all nonzero values x; y 2 X.

Next a common fixed theorem for fuzzy mappings is proved

due to Cho [1].

Theorem 2.5 [1]. Let F;G : X!WðXÞ be fuzzy mappings
satisfying the following condition: There exist a; b > 0 such

that aþ b < 1 and

DðFx;GyÞ 6 apðy;GyÞÞ½ð1þ pðx;FxÞÞpðx;FxÞ�
1
2

1þ 2dðx; yÞ þ bdðx; yÞ;

for all x; y 2 X. Then F and G have a common fixed point.

Theorem 2.6. Let ðX; dÞ be a complete metric space and let F1

and F2 be fuzzy mappings from X to FðXÞ satisfying the follow-
ing condition:

(i) For each x; y 2 X , there exists aðxÞ; aðyÞ 2 ð0; 1� such that
aðxÞF 1ðxÞ and aðyÞF 2ðyÞ are nonempty closed bounded sub-
sets of X.

(ii)

HðaðxÞF1ðxÞ; aðyÞF2ðyÞÞ

6
a1dðy; aðyÞF2ðyÞÞ½f1þdðx; aðxÞF1ðxÞÞgdðx; aðxÞF1ðxÞÞ�

1
2

1þ2dðx;yÞ þa2dðx;yÞ;

where a1; a2 > 0 and a1 þ a2 < 1.

Then there exists z 2 X such that z2aðzÞF1ðzÞ\aðzÞF2ðzÞ.

Proof. Let x0 2 X. Then by condition (i), there exists
a1 2 ð0; 1� such that a1F1ðx0Þ is a nonempty closed bounded

subset of X.

Choose x1 2 a1F1ðx0Þ.

For this x1, there exists a2 2 ð0; 1� such that a2F2ðx1Þ is a
nonempty closed bounded subset of X. Since a1F1ðx0Þ and
a2F2ðx1Þ are nonempty closed bounded subsets of X and by
Lemma 2.1, there exists x2 2 a2F2ðx1Þ such that
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