

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Fixed point theorems under Pata-type conditions in metric spaces

CrossMark

Zoran Kadelburg^{a,*}, Stojan Radenović^b

^a University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Beograd, Serbia ^b University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Beograd, Serbia

Received 11 July 2014; accepted 2 September 2014 Available online 11 February 2015

KEYWORDS

Fixed point; Chatterjea-type maps; Common fixed point; Coupled fixed point; Pata-type condition **Abstract** In this paper, we prove a generalization of Chatterjea's fixed point theorem, based on a recent result of Pata. Also, we establish common fixed point results of Pata-type for two maps, as well as a coupled fixed point result in ordered metric spaces. An example is given to show that new results are different from the known ones.

2010 MATHEMATICS SUBJECT CLASSIFICATION: Primary 47H10; Secondary 47H09

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction and preliminaries

Throughout this paper, (X, d) will be a given complete metric space. Let us select an arbitrary point $x_0 \in X$, and call it the "zero of X"; further, denote

 $||x|| = d(x, x_0), \quad \text{for all } x \in X.$

It will be clear that the obtained results do not depend on the particular choice of point x_0 . Also, $\psi : [0,1] \rightarrow [0,\infty)$ will be a fixed increasing function, continuous at zero, with $\psi(0) = 0$.

Peer review under responsibility of Egyptian Mathematical Society.

In a recent paper [1], Pata obtained the following refinement of the classical Banach Contraction Principle.

Theorem 1.1 [1]. Let $f: X \to X$ and let $\Lambda \ge 0, \alpha \ge 1$ and $\beta \in [0, \alpha]$ be fixed constants. If the inequality

$$d(fx, fy) \leq (1 - \varepsilon)d(x, y) + A\varepsilon^{\alpha}\psi(\varepsilon)[1 + ||x|| + ||y||]^{\beta}$$
(1.1)

is satisfied for every $\varepsilon \in [0, 1]$ and all $x, y \in X$, then f has a unique fixed point $z \in X$. Furthermore, the sequence $\{f^n x_0\}$ converges to z.

Chakraborty and Samanta extended in [2] the result of Pata to the case of Kannan-type contractive condition.

In this paper, we prove a further extension of Pata's result, using contractive condition of Chatterjea's type [3,4]. Also, we establish common fixed point results of Pata-type for two maps, as well as a coupled fixed point result in ordered metric spaces. An example is given to show that new results are different from the known ones.

http://dx.doi.org/10.1016/j.joems.2014.09.001

1110-256X © 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

^{*} Corresponding author.

E-mail addresses: kadelbur@matf.bg.ac.rs (Z. Kadelburg), radens@beotel.net (S. Radenović).

1.1. An auxiliary result

Assertions similar to the following lemma were used (and proved) in the course of proofs of several fixed point results in various papers.

Lemma 1.1 [5]. Let (X, d) be a metric space and let $\{y_n\}$ be a sequence in X such that $d(y_{n+1}, y_n)$ is nonincreasing and that

$$\lim_{n \to \infty} d(y_{n+1}, y_n) = 0.$$

If $\{y_{2n}\}$ is not a Cauchy sequence then there exist a $\delta > 0$ and two strictly increasing sequences $\{m_k\}$ and $\{n_k\}$ of positive integers such that the following sequences tend to δ when $k \to \infty$:

2. A Chatterjea-type fixed point result

Theorem 2.1. Let $f : X \to X$ and let $\Lambda \ge 0, \alpha \ge 1$ and $\beta \in [0, \alpha]$ be fixed constants. If the inequality

$$d(fx, fy) \leq \frac{1 - \varepsilon}{2} (d(x, fy) + d(y, fx)) + \Lambda \varepsilon^{\alpha} \psi(\varepsilon) [1 + ||x|| + ||y|| + ||fx|| + ||fy||]^{\beta}$$
(2.1)

is satisfied for every $\varepsilon \in [0,1]$ and all $x, y \in X$, then f has a unique fixed point $z \in X$.

Proof.

1. Uniqueness. For any two fixed $u, v \in X$, we can write (2.1) in the form

$$d(fu, fv) \leq \frac{1-\varepsilon}{2} (d(u, fv) + d(v, fu)) + K\varepsilon\psi(\varepsilon), \qquad K > 0.$$

If $fu = u$ and $fv = v$ then

 $d(u,v)\leqslant K\psi(\varepsilon),$

for all $\varepsilon \in (0, 1]$, which implies that d(u, v) = 0.

2. Existence of z.

Starting from x_0 , we introduce the sequences

 $x_n = fx_{n-1} = f^n x_0$ and $c_n = ||x_n||$.

2.1. First, we have that the sequence $d(x_{n+1}, x_n)$ is nonincreasing, that is

$$d(x_{n+1}, x_n) \leq d(x_n, x_{n-1}) \leq \dots \leq d(x_1, x_0),$$
 (2.2)

for all $n \in \mathbb{N}$.

Indeed, putting $\varepsilon = 0, x = x_n, y = x_{n-1}$ in (2.1), we obtain (2.2).

2.2. The sequence $\{c_n\}$ is bounded.

Using (2.2), we deduce the following estimate

$$c_n = d(x_n, x_0) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_1) + d(x_1, x_0)$$

 $\leq d(x_{n+1}, x_1) + 2c_1 = d(fx_n, fx_0) + 2c_1.$ Therefore, we infer from (2.1) that

$$c_n \leq \frac{1-\varepsilon}{2} [d(x_n, x_1) + d(x_{n+1}, x_0)] + \Lambda \varepsilon^{\alpha} \psi(\varepsilon) [1 + ||x_n|| + ||x_{n+1}|| + ||x_1||]^{\beta} + 2c_1.$$

Using $d(x_n, x_1) \leq d(x_n, x_0) + d(x_0, x_1), d(x_{n+1}, x_0) \leq d(x_{n+1}, x_n) + d(x_n, x_0)$ and (2.2), as $\beta \leq \alpha$, the previous inequality implies that

$$c_n \leq (1-\varepsilon)(c_n+c_1) + A\varepsilon^{\alpha}\psi(\varepsilon)[1+2c_n+2c_1]^{\alpha}+2c_1$$

Now,

$$[1 + 2c_n + 2c_1]^{\alpha} \leq (1 + 2c_n)^{\alpha} (1 + 2c_1)^{\alpha} \leq 2^{\alpha} c_n^{\alpha} (1 + 2c_1)^{\alpha},$$

which implies that

 $c_n \leq (1-\varepsilon)c_n + a\varepsilon^{\alpha}\psi(\varepsilon)c_n^{\alpha} + b,$

for some a, b > 0. Hence,

 $\varepsilon c_n \leqslant a\varepsilon^{\alpha}\psi(\varepsilon)c_n^{\alpha}+b.$

Now, for the same reason as in [1], it follows that the sequence $\{c_n\}$ is bounded.

2.3. $\lim_{n\to\infty} d(x_{n+1}, x_n) = 0.$

For all
$$\varepsilon \in (0, 1]$$
 and for $x = x_n, y = x_{n-1}$ we have

$$d(x_{n+1}, x_n) = d(fx_n, fx_{n-1}) \leqslant \frac{1-\varepsilon}{2} (d(x_n, x_n) + d(x_{n-1}, x_{n+1})) + \Lambda \varepsilon^{\alpha} \psi(\varepsilon) [1+2||x_n|| + ||x_{n-1}|| + ||x_{n+1}||]^{\beta} \leqslant \frac{1-\varepsilon}{2} (d(x_{n-1}, x_n) + d(x_n, x_{n+1})) + K \varepsilon \psi(\varepsilon), \quad K > 0.$$
(2.3)

If $\lim_{n\to\infty} d(x_{n+1}, x_n) = d^* > 0$, it follows from (2.3) that $d^* \leq K\psi(\varepsilon)$,

that is $d^* = 0$. A contradiction.

2.4. The sequence $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence.

If it is not the case, choose $\delta > 0$, $\{m_k\}$ and $\{n_k\}$ as in Lemma 2.1. Putting $x = x_{2m(k)-1}$, $y = x_{2n(k)}$ in (2.1), we obtain

$$d(x_{2m(k)}, x_{2n(k)+1}) \leq \frac{1-\varepsilon}{2} (d(x_{2m(k)-1}, x_{2n(k)+1}) + d(x_{2m(k)}, x_{2n(k)})) + K\varepsilon\psi(\varepsilon),$$
(2.4)

where $d(x_{2m(k)}, x_{2n(k)+1}) \to \delta$, $d(x_{2m(k)-1}, x_{2n(k)+1}) \to \delta$ and $d(x_{2m(k)}, x_{2n(k)}) \to \delta$. Letting $k \to \infty$ in (2.4), we obtain

$$\delta \leqslant K\psi(\varepsilon),$$

that is $\delta = 0$, a contradiction.

Taking into account the completeness of (X, d), we can now guarantee the existence of some $z \in X$ to which $\{x_n\}$ converges. Finally, all that remains to show is:

2.5. z is a fixed point for f.

For this we observe that, for all $n \in \mathbb{N}$ and for $\varepsilon = 0$,

$$d(fz,z) \leq d(fz,x_{n+1}) + d(x_{n+1},z) = d(fz,fx_n) + d(x_{n+1},z)$$
$$\leq \frac{1}{2}(d(z,x_{n+1}) + d(fz,x_n)) + d(x_{n+1},z).$$

Hence, $d(fz,z) \leq \frac{1}{2}d(fz,z)$, that is fz = z, which is the required result. \Box

The classical Chatterjea's result [3] is a consequence of Theorem 2.1, since the condition

$$d(fx, fy) \leq \frac{\lambda}{2}(d(x, fy) + d(y, fx))$$

for some $\lambda \in [0, 1)$ and all $x, y \in X$, implies condition (2.1). This can be proved in the same way as in [1, Section 3], or [2, Section 3]. Download English Version:

https://daneshyari.com/en/article/483777

Download Persian Version:

https://daneshyari.com/article/483777

Daneshyari.com