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Abstract In this paper, we prove a generalization of Chatterjea’s fixed point theorem, based on a

recent result of Pata. Also, we establish common fixed point results of Pata-type for two maps, as

well as a coupled fixed point result in ordered metric spaces. An example is given to show that new

results are different from the known ones.
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1. Introduction and preliminaries

Throughout this paper, ðX; dÞ will be a given complete metric

space. Let us select an arbitrary point x0 2 X, and call it the
‘‘zero of X’’; further, denote

kxk ¼ dðx; x0Þ; for all x 2 X:

It will be clear that the obtained results do not depend on the
particular choice of point x0. Also, w : ½0; 1� ! ½0;1Þ will be a
fixed increasing function, continuous at zero, with wð0Þ ¼ 0.

In a recent paper [1], Pata obtained the following refine-

ment of the classical Banach Contraction Principle.

Theorem 1.1 [1]. Let f : X! X and let K P 0; a P 1 and
b 2 ½0; a� be fixed constants. If the inequality

dðfx; fyÞ 6 ð1� eÞdðx; yÞ þ KeawðeÞ½1þ kxk þ kyk�b ð1:1Þ

is satisfied for every e 2 ½0; 1� and all x; y 2 X, then f has a
unique fixed point z 2 X. Furthermore, the sequence ffnx0g
converges to z.

Chakraborty and Samanta extended in [2] the result of Pata
to the case of Kannan-type contractive condition.

In this paper, we prove a further extension of Pata’s result,
using contractive condition of Chatterjea’s type [3,4]. Also, we
establish common fixed point results of Pata-type for two

maps, as well as a coupled fixed point result in ordered metric
spaces. An example is given to show that new results are
different from the known ones.
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1.1. An auxiliary result

Assertions similar to the following lemma were used (and
proved) in the course of proofs of several fixed point results
in various papers.

Lemma 1.1 [5]. Let ðX; dÞ be a metric space and let fyng be a

sequence in X such that dðynþ1; ynÞ is nonincreasing and that

lim
n!1

dðynþ1; ynÞ ¼ 0:

If fy2ng is not a Cauchy sequence then there exist a d > 0 and
two strictly increasing sequences fmkg and fnkg of positive inte-
gers such that the following sequences tend to d when k!1:

dðy2mk
; y2nkÞ; dðy2mk

; y2nkþ1Þ; dðy2mk�1; y2nkÞ;
dðy2mk�1; y2nkþ1Þ; dðy2mkþ1; y2nkþ1Þ:

ð1:2Þ

2. A Chatterjea-type fixed point result

Theorem 2.1. Let f : X! X and let K P 0; a P 1 and b 2 ½0; a�
be fixed constants. If the inequality

dðfx; fyÞ 6 1� e
2
ðdðx; fyÞ þ dðy; fxÞÞ

þ KeawðeÞ½1þ kxk þ kyk þ kfxk þ kfyk�b ð2:1Þ

is satisfied for every e 2 ½0; 1� and all x; y 2 X, then f has a

unique fixed point z 2 X.

Proof.

1. Uniqueness.For any two fixed u; v 2 X , we can write (2.1) in
the form

dðfu; fvÞ 6 1� e
2
ðdðu; fvÞ þ dðv; fuÞÞ þ KewðeÞ; K > 0:

If fu ¼ u and fv ¼ v then

dðu; vÞ 6 KwðeÞ;

for all e 2 ð0; 1�, which implies that dðu; vÞ ¼ 0.
2. Existence of z.

Starting from x0, we introduce the sequences

xn ¼ fxn�1 ¼ fnx0 and cn ¼ kxnk:

2.1. First, we have that the sequence dðxnþ1; xnÞ is nonin-

creasing, that is

dðxnþ1; xnÞ 6 dðxn; xn�1Þ 6 � � � 6 dðx1; x0Þ; ð2:2Þ

for all n 2 N.
Indeed, putting e ¼ 0; x ¼ xn; y ¼ xn�1 in (2.1), we obtain
(2.2).

2.2. The sequence fcng is bounded.
Using (2.2), we deduce the following estimate

cn ¼ dðxn; x0Þ 6 dðxn; xnþ1Þ þ dðxnþ1; x1Þ þ dðx1; x0Þ
6 dðxnþ1; x1Þ þ 2c1 ¼ dðfxn; fx0Þ þ 2c1:

Therefore, we infer from (2.1) that

cn 6
1� e
2
½dðxn; x1Þ þ dðxnþ1; x0Þ�

þ KeawðeÞ½1þ kxnk þ kxnþ1k þ kx1k�b þ 2c1:

Using dðxn; x1Þ 6 dðxn; x0Þ þ dðx0; x1Þ; dðxnþ1; x0Þ 6 dðxnþ1;
xnÞ þ dðxn; x0Þ and (2.2), as b 6 a, the previous inequality
implies that

cn 6 ð1� eÞðcn þ c1Þ þ KeawðeÞ½1þ 2cn þ 2c1�a þ 2c1

Now,

½1þ 2cn þ 2c1�a 6 ð1þ 2cnÞað1þ 2c1Þa � 2aca
nð1þ 2c1Þa;

which implies that

cn 6 ð1� eÞcn þ aeawðeÞca
n þ b;

for some a; b > 0. Hence,

ecn 6 aeawðeÞca
n þ b:

Now, for the same reason as in [1], it follows that the
sequence fcng is bounded.

2.3. limn!1dðxnþ1; xnÞ ¼ 0.

For all e 2 ð0; 1� and for x ¼ xn; y ¼ xn�1 we have

dðxnþ1; xnÞ ¼ dðfxn; fxn�1Þ 6
1� e
2
ðdðxn; xnÞ þ dðxn�1; xnþ1ÞÞ

þ KeawðeÞ½1þ 2kxnk þ kxn�1k

þkxnþ1k�b 6
1� e
2
ðdðxn�1; xnÞ

þdðxn; xnþ1ÞÞ þ KewðeÞ; K > 0: ð2:3Þ

If limn!1dðxnþ1; xnÞ ¼ d� > 0, it follows from (2.3) that

d� 6 KwðeÞ;

that is d� ¼ 0. A contradiction.

2.4. The sequence fxngn2N is a Cauchy sequence.

If it is not the case, choose d > 0; fmkg and fnkg as in
Lemma 2.1. Putting x ¼ x2mðkÞ�1; y ¼ x2nðkÞ in (2.1), we

obtain

dðx2mðkÞ; x2nðkÞþ1Þ 6
1� e
2
ðdðx2mðkÞ�1; x2nðkÞþ1Þ

þ dðx2mðkÞ; x2nðkÞÞÞ þ KewðeÞ; ð2:4Þ
where dðx2mðkÞ; x2nðkÞþ1Þ ! d, dðx2mðkÞ�1; x2nðkÞþ1Þ ! d and

dðx2mðkÞ; x2nðkÞÞ ! d. Letting k!1 in (2.4), we obtain

d 6 KwðeÞ;

that is d¼ 0, a contradiction.
Taking into account the completeness of ðX; dÞ, we can now

guarantee the existence of some z 2 X to which fxng con-
verges.Finally, all that remains to show is:

2.5. z is a fixed point for f.

For this we observe that, for all n 2 N and for e ¼ 0,

dðfz; zÞ 6 dðfz; xnþ1Þ þ dðxnþ1; zÞ ¼ dðfz; fxnÞ þ dðxnþ1; zÞ

6
1

2
ðdðz; xnþ1Þ þ dðfz; xnÞÞ þ dðxnþ1; zÞ:

Hence, dðfz; zÞ 6 1
2
dðfz; zÞ, that is fz ¼ z, which is the

required result. h

The classical Chatterjea’s result [3] is a consequence of

Theorem 2.1, since the condition

dðfx; fyÞ 6 k
2
ðdðx; fyÞ þ dðy; fxÞÞ

for some k 2 ½0; 1Þ and all x; y 2 X, implies condition (2.1).
This can be proved in the same way as in [1, Section 3], or
[2, Section 3].
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