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Abstract In the present article, we have analyzed the Reiner-Rivlin fluid model for blood flow

through a tapered artery with a stenosis. The constitutive equations for a Reiner-Rivlin fluid have

been modeled in cylindrical coordinates. A perturbation series in dimensionless Reiner-Rivlin fluid

parameter ðk1 � 1Þ have been used to obtain explicit forms for the velocity, resistance impedance,

wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of

tapered arteries (i.e converging tapering, diverging tapering, non-tapered artery) have been exam-

ined for different parameters of interest.
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1. Introduction

In the arterial systems of humans or animals, it is quite com-
mon to find localized narrowings, commonly called stenosis,
caused by intravascular plaques. These stenosis disturb the
normal pattern of blood flow through the artery [1]. Pulsatile

flow of blood through a stenosed porous medium under the
influence of body acceleration has been studied by El-Shahed
[2]. He mentioned that the investigations of blood flow

through arteries are of considerable importance in many car-
diovascular diseases particularly atherosclerosis. The effects

of pulsatility, stenosis and non-Newtonian behavior of blood,
assuming the blood to be represented by Herschel–Bulkley
fluid, are simultaneously considered by Sankara and Hemala-

tha [3]. Among the various arterial diseases the development of
arteriosclerosis in blood vessels is quite common which may be
attributed to accumulation of lipids in the arterial wall or path-

ological changes in the tissue structure [4].
The mathematical modeling of non-Newtonian nature of

blood flow through a stenosed tube has been studied by Shukla
et al. [5,6] and Chaturani and Ponnalagar Samy [7]. Blood flow

in a stenosed tube has been modeled for couple stress fluid by
Pralhad and Schultz [8]. Hall [9] and Porenta et al. [10] pointed
out that most of the vessels could be considered as long and

narrow, slowly tapering cones. Thus the effects of vessel
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tapering together with the non-Newtonian behavior of the
streaming blood seem to be equally important and hence cer-
tainly deserve special attention [11,12]. Some recent studies

which have been made to study the blood flow properties are
cited in the refs. [13–20].

With the above motivation, an attempt is made in the pres-

ent investigation to develop a mathematical model in order to
study the characteristics of the Reiner Rivlin fluid model for
blood flow through a tapered arteries in the presence of steno-

sis. The governing equations are solved analytically by regular
perturbation method. The expression for velocity, resistance
impedance, wall shear stress and shearing stress at the stenosis
throat has been calculated. At the end, the physical features of

various emerging parameters have been discussed by plotting
the graphs. Trapping phenomena have been discussed at the
end of the article.

2. Mathematical formulation

Let us consider an incompressible flow of Reiner Rivlin fluid

having constant viscosity l and density q in a tube having
length L. We are considering cylindrical coordinate system
ðr; h; zÞ such that �u and �w are the velocity component in �r
and �z direction respectively. Further we assume that r ¼ 0 is
taken as the axis of the symmetry of the tube. The geometry
of the stenosis which is assumed to be symmetric can be

described as [11]

hðzÞ ¼dðzÞ½1� g1ðbn�1ðz� aÞ � ðz� aÞnÞ�;
a 6z 6 aþ b; ð1Þ
¼dðzÞ; otherwise dðzÞ ¼ d0 þ nz; ð2Þ

where dðzÞ is the radius of the tapered arterial segment in the

stenotic region, d0 is the radius of the non-tapered artery in
the non-stenoic region, n is the tapering parameter, b is the
length of stenosis, ðn P 2Þ is a parameter determining the

shape of the constriction profile and referred to as the shape
parameter (the symmetric stenosis occurs for n ¼ 2) and a indi-
cates its location as shown in Fig. 1. The parameter g is defined
as

g ¼ d�n
n
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The equations governing the steady incompressible Reiner-

Rivlin fluid are given as
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The Cauchy stress �sij for a Reiner Rivlin fluid is given by

[12]

�sij ¼ ��pdij þ leij þ lceikekj; i; j ¼ �r; �z; �h; ð7Þ

where �sij is the stress tensor, eij is the rate of strain tensor, dij is

the Kronecker delta, l is the coefficient of viscosity and lc is

the coefficient of cross viscosity.
We introduce the non-dimensional variables
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where u0 is the velocity averaged over the section of the tube of
the width d0.

Making use of Eqs. (7) and (8), Eqs. (4)–(6), the appropri-
ate equations describing the steady flow of an incompressible

Reiner Rivlin fluid in the case of mild stenosis d�
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� 1

� �
,

subject to the additional conditions [11] i.e
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can be written as
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The corresponding boundary conditions are

@w

@r
¼ 0 at r ¼ 0; w ¼ 0 at r ¼ hðzÞ; ð13Þ

where

hðzÞ ¼ ð1þ nzÞ 1� g1ððz� rÞ � ðz� rÞnÞ½ �;
r 6 z 6 rþ 1;

ð14Þ

and
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in which ðn ¼ tan/Þ;/ is called tapered angle and for converg-
ing tapering ð/ < 0Þ, non-tapered artery ð/ ¼ 0Þ and the
diverging tapering ð/ > 0Þ.

Figure 1 Geometry of an axially nonsymmetrical stenosis in the

artery.
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