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Abstract In this paper, we discuss the global asymptotic stability of all solutions of the difference

equation

xnþ1 ¼
Axn�2

Bþ Cxnxn�1xn�2
; n ¼ 0; 1; . . .

where A;B;C are positive real numbers and the initial conditions x�2; x�1; x0 are real

numbers. Although we have an explicit formula for the solutions of that equation, the oscillation

character is worth to be discussed.
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1. Introduction

Difference equations, although their forms look very simple, it
is extremely difficult to understand thoroughly the global

behaviors of their solutions. One can refer to [1–4]. The study
of nonlinear rational difference equations of higher order is of
paramount importance, since we still know so little about such

equations.
Cinar [5,6] examined the global asymptotic stability of all

positive solutions of the rational difference equation

xnþ1 ¼
xn�1

1þ xnxn�1
; n ¼ 0; 1; . . .

and

xnþ1 ¼
xn�1

�1þ xnxn�1
; n ¼ 0; 1; . . .

He also [7] discussed the behavior of the solutions of the
difference equation

xnþ1 ¼
axn�1

1þ bxnxn�1
; n ¼ 0; 1; . . .

Stević [8] showed that every positive solution of the difference
equation

xnþ1 ¼
xn�1

1þ xnxn�1
; n ¼ 0; 1; . . .

converges to zero.
In [9], H. Sedaghat determined the global behavior of all

solutions of the rational difference equations

E-mail address: abuzead73@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

Journal of the Egyptian Mathematical Society (2015) 23, 62–66

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems

1110-256X ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

http://dx.doi.org/10.1016/j.joems.2014.03.001

http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2014.03.001&domain=pdf
mailto:abuzead73@yahoo.com
http://dx.doi.org/10.1016/j.joems.2014.03.001
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2014.03.001


xnþ1 ¼
axn�1

xnxn�1 þ b
; xnþ1 ¼

axnxn�1

xn þ bxn�2
; n ¼ 0; 1; . . .

where a; b > 0.

In [10], the author investigated the global behavior and
periodic character of the two difference equations

xnþ1 ¼
xn�2

�1þ xnxn�1xn�2
; n ¼ 0; 1; . . .

In this paper, we discuss the global stability and periodic
character of all solutions of the difference equation

xnþ1 ¼
Axn�2

Bþ Cxnxn�1xn�2
; n ¼ 0; 1; . . . ð1:1Þ

Consider the difference equation

xnþ1 ¼ fðxn; xn�1; . . . ; xn�kÞ; n ¼ 0; 1 . . . ð1:2Þ

where f : Rkþ1 ! R.

Definition 1.1 [11]. An equilibrium point for Eq. (1.2) is a

point �x 2 R such that �x ¼ fð�x; �x; . . . ; �xÞ.

Definition 1.2 [11].

(1) An equilibrium point �x for Eq. (1.2) is called locally

stable if for every � > 0; 9d > 0 such that every solution
fxng with initial conditions x�k ; x�kþ1; . . . ;
x0 2��x� d;�xþ d½ is such that xn 2��x� �;�xþ �½; 8n 2 N .

Otherwise �x is said to be unstable.
(2) The equilibrium point �x of Eq. (1.2) is called locally

asymptotically stable if it is locally stable and there

exists c > 0 such that for any initial conditions
x�k ; x�kþ1; . . . ; x0 2��x� c;�xþ c½, the corresponding solu-
tion fxng tends to �x.

(3) An equilibrium point �x for Eq. (1.2) is called global

attractor if every solution fxng converges to �x as n!1.
(4) The equilibrium point �x for Eq. (1.2) is called globally

asymptotically stable if it is locally asymptotically stable

and global attractor.

The linearized equation associated with Eq. (1.2) is

ynþ1 ¼
Xk
i¼0

@f

@xn�i
ð�x; . . . ; �xÞyn�i; n ¼ 0; 1; 2; . . . ð1:3Þ

the characteristic equation associated with Eq. (1.3) is

kkþ1 �
Xk
i¼0

@f

@xn�i
ð�x; . . . ; �xÞkk�i ¼ 0: ð1:4Þ

Theorem 1.3 [11]. Assume that f is a C1 function and let �x be an
equilibrium point of Eq. (1.2). Then the following statements are

true:

(1) If all roots of Eq. (1.4) lie in the open disk jkj < 1, then �x
is locally asymptotically stable.

(2) If at least one root of Eq. (1.4) has absolute value greater
than one, then �x is unstable.

The change of variables
ffiffiffi
C
B

3

q
xn ¼ yn reduces the Eq. (1.1) to

the equation

ynþ1 ¼
cyn�2

1þ ynyn�1yn�2
; n ¼ 0; 1; . . . ð1:5Þ

where c ¼ A
B
.

2. Linearized stability and solutions of Eq. (1.5)

In this section we study linearized stability analysis and the

solutions of the difference Eq. (1.5). It is clear that Eq. (1.5)
has the equilibrium points �y ¼ 0 and �y ¼

ffiffiffiffiffiffiffiffiffiffiffi
c� 13
p

. During the
paper, we suppose that a ¼ y�2y�1y0.

The following theorem describes the behavior of the equi-

librium points.

Theorem 2.1. Assume that a– �1Pn

i¼0c
i
for any n 2 N. Then the

following statements are true.

(1) If c < 1, then �y ¼ 0 is locally asymptotically stable and
�y ¼

ffiffiffiffiffiffiffiffiffiffiffi
c� 13
p

is unstable.

(2) If c ¼ 1, then �y ¼ 0 is a nonhyperbolic point.
(3) If c > 1, then �y ¼ 0 is a repeller and �y ¼

ffiffiffiffiffiffiffiffiffiffiffi
c� 13
p

is a non-
hyperbolic point.

Theorem 2.2. Let y�2; y�1 and y0 be real numbers such that
a ¼ y�2y�1y0–

�1Pn

i¼0
ci
for any n 2 N. Then the solutions of Eq.

(1.5) are

yn ¼

y�2c
n�1
3 þ1
Qn�1

3
j¼0

1þa
P3j�1

k¼0
ck

1þa
P3j

k¼0
ck
; n ¼ 1; 4; 7; . . .

y�1c
n�2
3 þ1
Qn�2

3

j¼0
1þa
P3j

k¼0
ck

1þa
P3jþ1

k¼0
ck
; n ¼ 2; 5; 8; . . .

y0c
n
3

Qn
3

j¼1
1þa
P3j�2

k¼0
ck

1þa
P3j�1

k¼0
ck
; n ¼ 3; 6; 9; . . .

8>>>>>>>>>><
>>>>>>>>>>:

ð2:1Þ

Proof. We have that

y1 ¼ y�2c
1

1þ a
; y2 ¼ y�1c

1þ a
1þ að1þ cÞ and y3

¼ y0c
1þ að1þ cÞ

1þ að1þ cþ c2Þ

as expected by formula (2.1). Now assume that m > 1. Then

from formula (2.1), we can write

y3m�2 ¼ y�2c
m
Ym�1
j¼0

1þ a
P3j�1

k¼0 ck

1þ a
P3j

k¼0c
k
;

y3m�1 ¼ y�1c
m
Ym�1
j¼0

1þ a
P3j

k¼0c
k

1þ a
P3jþ1

k¼0 ck
;

y3m ¼ y0c
m
Ym
j¼1

1þ a
P3j�2

k¼0 ck

1þ a
P3j�1

k¼0 ck
¼ y0c

m
Ym�1
j¼0

1þ a
P3jþ1

k¼0 ck

1þ a
P3jþ2

k¼0 ck

Then

On the oscillation of a third order rational difference equation 63



Download English Version:

https://daneshyari.com/en/article/483815

Download Persian Version:

https://daneshyari.com/article/483815

Daneshyari.com

https://daneshyari.com/en/article/483815
https://daneshyari.com/article/483815
https://daneshyari.com

