

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE On asymptotically ideal equivalent sequences

Bipan Hazarika

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India

Received 16 September 2013; revised 13 December 2013; accepted 27 January 2014 Available online 18 March 2014

KEYWORDS

Ideal; *I*-convergence; Asymptotically equivalent sequence **Abstract** In this article we introduce the notion of asymptotically *I*-equivalent sequences. We prove the decomposition theorem for asymptotically *I*-equivalent sequences. Further, we will present four theorems that characterize asymptotically *I*-equivalent of multiple λ and the regularity of asymptotically *I*-convergence by using a sequence of infinite matrices.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 40A05; 40A99; 40C15

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

Throughout $w, \ell_{\infty}, c, c_0, c^I, c_0^I, m^I$, and m_0^I denote all, bounded, convergent, null, *I*-convergent, *I*-null, bounded *I*-convergent and bounded *I*-null class of sequences, respectively. Also \mathbb{N} and \mathbb{R} denote the set of positive integers and set of real numbers, respectively. Further S_0^I denote the subset of the space m_0^I with non-zero terms.

The notion of statistical convergence is a very useful functional tool for studying the convergence problems of numerical sequences/matrices (double sequences) through the concept of density. It was first introduced by Fast [1] and Schoenberg [2], independently for the real sequences. Later on it was further investigated from sequence space point of view and linked with the summability theory by Fridy [3] and many others. The idea

E-mail address: bh_rgu@yahoo.co.in Peer review under responsibility of Egyptian Mathematical Society.

is based on the notion of natural density of subsets of \mathbb{N} , the set of positive integers, which is defined as follows. The natural density of a subset of \mathbb{N} is denoted by $\delta(E)$ and is defined by

$$\delta(E) = \lim_{n \to \infty} \frac{1}{n} |\{k \leqslant n : k \in E\}|,$$

where the vertical bar denotes the cardinality of the respective set.

The notion of *I*-convergence (*I* denotes an ideal of subsets of \mathbb{N}), which is a generalization of statistical convergence, was introduced by Kostyrko et al. [4]. Later on it was further investigated from sequence space point of view and linked with summability theory by Šalát et al. [5,6], Tripathy and Hazarika [7] and many others.

A non-empty family of sets $I \subseteq P(\mathbb{N})$ (power set of \mathbb{N}) is called an ideal of \mathbb{N} if (i) for each $A, B \in I$, we have $A \cup B \in I$; (ii) for each $A \in I$ and $B \subseteq A$, we have $B \in I$. A family $F \subseteq P(\mathbb{N})$ (power set of \mathbb{N}) is called a filter of \mathbb{N} if (i) $\phi \notin F$; (ii) for each $A, B \in F$, we have $A \cap B \in F$; and (iii) for each $A \in F$ and $B \supset A$, we have $B \in F$. An ideal I is called nontrivial if $I \neq \phi$ and $\mathbb{N} \notin I$. It is clear that $I \subseteq P(\mathbb{N})$ is a non-trivial ideal if and only if the class $F = F(I) = {\mathbb{N} - A : A \in I}$ is a filter on \mathbb{N} . The filter F(I) is called the filter associated with the ideal I. A non-trivial ideal $I \subseteq P(\mathbb{N})$ is called an admissible

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2014.01.011

ideal of \mathbb{N} if it contains all singletons, i.e., if it contains $\{\{x\}: x \in \mathbb{N}\}.$

In [8], Marouf introduced the definition for asymptotically equivalent of two sequences. In [9], Pobyvancts introduced the concept of asymptotically regular matrices, which preserve the asymptotic equivalence of two nonnegative numbers sequences. The frequent occurrence of terms having zero value makes a term-by-term ratio inapplicable in many cases. In [3], Fridy introduced new ways of comparing rates of convergence. If x is in ℓ^1 , he used the remainder sum, whose *n*th term is $R_n(x) := \sum_{k=n}^{\infty} |x_k|$, and examined the ratio $\frac{R_n(x)}{R_n(y)}$ as $n \to \infty$. If x is a bounded sequence, he used the supremum of the remaining terms which is given by $\mu_n x := \sup_{k \ge n} |x_k|$. In [10], Patterson introduced the concept of asymptotically statistically equivalent sequences and natural regularity conditions for nonnegative summability matrices.

In present study we introduce the definition of asymptotically *I*-equivalent sequences and prove the decomposition theorem for asymptotically *I*-equivalent sequences and some interesting theorems related to this notion.

2. Definitions and notations

Definition 2.1. [1,3]. A sequence (x_k) is said to be textitualistically convergent to x_0 if for each $\varepsilon > 0$, the set $E(\varepsilon) = \{k \in \mathbb{N} : |x_k - x_0| \ge \varepsilon\}$ has natural density zero.

Definition 2.2 [4]. A sequence (x_k) is said to be *I*-convergent if there exists a number x_0 such that for each $\varepsilon > 0$, the set

 $\{k \in \mathbb{N} : |x_k - x_0| \ge \varepsilon\} \in I.$

Definition 2.3 [4]. Let (x_k) and (y_k) be two real sequences, then we say that $x_k = y_k$ for almost all k related to I (a.a.k.r.I) if the set $\{k \in \mathbb{N} : x_k \neq y_k\}$ belongs to I.

Definition 2.4 [4]. An admissible ideal *I* is said to have the property (AP) if for any sequence $\{A_1, A_2, \ldots\}$ of mutually disjoint sets of *I*, there is sequence $\{B_1, B_2, \ldots\}$ of sets such that each symmetric difference $A_i \Delta B_i (i = 1, 2, 3, \ldots)$ is finite and $\bigcup_{i=1}^{\infty} B_i \in I$.

Example 2.1. If we take $I = I_f = \{A \subseteq \mathbb{N} : A \text{ is a finite subset}\}$. Then, I_f is a non-trivial admissible ideal of \mathbb{N} and the corresponding convergence coincide with usual convergence of sequences.

Example 2.2. If we take $I = I_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$, where $\delta(A)$ denote the asymptotic density of the set A. Then I_{δ} is a non-trivial admissible ideal of \mathbb{N} and the corresponding convergence coincide with statistical convergence of sequences.

Let $\ell^1 = \{x = (x_k) : \sum_{k=1}^{\infty} |x_k| < \infty\}.$

For a summability transformation A, we use d(A) to denote the domain of A:

$$d(A) = \left\{ x = (x_k) : \lim_{n} \sum_{k=1}^{\infty} a_{n,k} x_k \text{ exists} \right\}.$$

Also $S_{\delta} = \{x = (x_k) : x_k \ge \delta > 0 \text{ for all } k\}$ and

 $S_0 = \{$ the set of all nonnegative sequences which have at most a finite number of zero entries $\}$.

For a sequence $x = (x_k)$ in ℓ^1 or ℓ_{∞} , we also define

$$R_n(x) := \sum_{k=n}^{\infty} |x_k|$$
 and $\mu_n x := \sup_{k \ge n} |x_k|$ for $n \ge 0$.

Definition 2.5 [8]. Two nonnegative sequences (x_k) and (y_k) are said to be *asymptotically equivalent*, written as $x \sim y$ if $\lim_k \frac{x_k}{y_k} = 1$.

Definition 2.6. If $A = (a_{n,k})$ is a sequence of infinite matrices, then a sequence $x = (x_k) \in \ell_{\infty}$ is said to be *A*-summable to the value x_0 if

$$\lim_{n} (Ax)_n = \lim_{n} \sum_{k=1}^{\infty} a_{n,k} x_k = x_0.$$

Definition 2.7. A summability matrix *A* is *asymptotically regular* provided that $Ax \sim Ay$ whenever $x \sim y, x \in S_0$ and $y \in S_{\delta}$ for some $\delta > 0$.

The following results will be used for establishing some results of this article.

Lemma 2.1 (*Pobyvancts [9]*). A nonnegative matrix A is asymptotically regular if and only if for each fixed integer m,

$$\lim_{n\to\infty}\frac{a_{n,m}}{\sum_{k=1}^{\infty}a_{n,k}}=0.$$

Lemma 2.2. A matrix A which maps c_0 to c_0 if and only if

- (a) $\lim_{n\to\infty} a_{n,k}$ for k = 1, 2, 3, ...
- (b) There exists a number M > 0 such that for each n, ∑_{k=1}[∞] |a_{n,k}| < M. Throughout the article I is an admissible ideal of subsets of N.</p>

3. Asymptotically I-equivalent sequences

In this section we introduce the following definitions and prove the decomposition theorem and some interesting theorems.

Definition 3.1. Two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be *asymptotically I-equivalent* of multiple $\lambda \in \mathbb{R}$, written as $x \stackrel{I_k}{\sim} y$, provided for every $\varepsilon > 0$, and $y_k \neq 0$, the set

$$\left\{k \in \mathbb{N} : \left|\frac{x_k}{y_k} - \lambda\right| \ge \varepsilon\right\}$$

belongs to *I* and in this case we write $I - \lim_k \frac{x_k}{y_k} = \lambda$, simply asymptotically *I*-equivalent if $\lambda = 1$. It is easy to observe that $x \stackrel{I_2}{\sim} y$ is equivalent to $\frac{x_k}{\lambda} \stackrel{I}{\sim} y_k$. From this observation it follow, that we obtain the same notion if we use all real $\lambda's$, some $\lambda \neq 0$, or just $\lambda = 1$.

Example 3.1. Let us consider the sequences $x = (x_k)$ and $y = (y_k)$ as follows:

Download English Version:

https://daneshyari.com/en/article/483816

Download Persian Version:

https://daneshyari.com/article/483816

Daneshyari.com