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Abstract In the present paper we introduce the sequence spaces defined by a sequence of modulus

function F ¼ ðfkÞ. We study some topological properties and inclusion relations between these

spaces.
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1. Introduction and preliminaries

Mursaleen and Noman [1] introduced the notion of k-conver-
gent and k-bounded sequences as follows :

Let k ¼ ðkkÞ1k¼1 be a strictly increasing sequence of positive
real numbers tending to infinity i.e.

0 < k0 < k1 < � � � and kk !1 as k!1

and said that a sequence x ¼ ðxkÞ 2 w is k-convergent to the

number L, called the k-limit of x if KmðxÞ�!L as m!1,
where

kmðxÞ ¼
1

km

Xm
k¼1
ðkk � kk�1Þxk:

The sequence x ¼ ðxkÞ 2 w is k-bounded if
supmjKmðxÞj <1. It is well known [1] that if limmxm ¼ a in
the ordinary sense of convergence, then

lim
m

1

km

Xm
k¼1
ðkk � kk�1Þjxk � aj

 ! 
¼ 0:

This implies that

lim
m
jKmðxÞ � aj ¼ lim

m

1

km

Xm
k¼1
ðkk � kk�1Þðxk � aÞ

�����
����� ¼ 0

which yields that limmKmðxÞ ¼ a and hence x ¼ ðxkÞ 2 w is k-
convergent to a.

Let w be the set of all sequences, real or complex numbers
and l1; c and c0 be respectively the Banach spaces of bounded,
convergent and null sequences x ¼ ðxkÞ, normed by kxk ¼
supkjxkj, where k 2 N, the set of positive integers.

A modulus function is a function f : ½0;1Þ ! ½0;1Þ such
that

(1) f ðxÞ ¼ 0 if and only if x ¼ 0,
(2) f ðxþ yÞ 6 f ðxÞ þ f ðyÞ for all x P 0; y P 0,
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(3) f is increasing

(4) f is continuous from right at 0.

It follows that fmust be continuous everywhere on ½0;1Þ.
The modulus function may be bounded or unbounded. For
example, if we take fðxÞ ¼ x

xþ1, then fðxÞ is bounded. If
fðxÞ ¼ xp; 0 < p < 1, then the modulus fðxÞ is unbounded.
Subsequently, modulus function has been discussed in ([2–15])

and many others.
Let X be a linear metric space. A function p : X! R is

called paranorm, if

(1) pðxÞP 0, for all x 2 X ,
(2) pð�xÞ ¼ pðxÞ, for all x 2 X ,

(3) pðxþ yÞ 6 pðxÞ þ pðyÞ, for all x; y 2 X ,
(4) if ðknÞ is a sequence of scalars with kn ! k as n!1

and ðxnÞ is a sequence of vectors with pðxn � xÞ !
0 as n!1, then pðknxn � kxÞ ! 0 as n!1.

A paranorm p for which pðxÞ ¼ 0 implies x ¼ 0 is called to-
tal paranorm and the pair ðX; pÞ is called a total paranormed

space. It is well known that the metric of any linear metric
space is given by some total paranorm (see [16], Theo-
rem 10.4.2, P-183).

Let F ¼ ðfkÞ be a sequence of modulus function, X be a lo-
cally convex Hausdorff topological linear spaces whose topol-
ogy is determined by a set Q of continuous seminorm

q; p ¼ ðpkÞ be a bounded sequence of positive real numbers.
By wðXÞ be denotes the spaces of all sequences defined over
X. Now, we define the following sequence spaces in the present
paper:

wðK;F; p; qÞ ¼ x 2 wðXÞ :
1

n

Xn
k¼1
½fkðqðKkðxÞ � LÞÞ�pk ! 0;

(

as n!1 for some L

)
;

w0ðK;F;p;qÞ¼ x2wðXÞ : 1
n

Xn
k¼1
½fkðqðKkðxÞÞÞ�pk! 0; as n!1

( )

and

w1ðK;F; p; qÞ ¼ x 2 wðXÞ : sup
n

1

n

Xn
k¼1
½fkðqðKkðxÞÞÞ�pk <1

( )
:

If FðxÞ ¼ x, we have

wðK; p; qÞ ¼ x 2 wðXÞ :
1

n

Xn
k¼1
ðqðKkðxÞ � LÞÞpk ! 0;

(

as n!1 for some L

)
;

w0ðK; p; qÞ ¼ x 2 wðXÞ :
1

n

Xn
k¼1
ðqðKkðxÞÞÞpk ! 0; as n!1

( )

and

w1ðK; p; qÞ ¼ x 2 wðXÞ : sup
n

1

n

Xn
k¼1
ðqðKkðxÞÞÞpk <1

( )
:

If p ¼ ðpkÞ ¼ 1, for all k 2 N, we shall write above spaces
as

wðK;F; qÞ ¼ x 2 wðXÞ :
1

n

Xn
k¼1

fkðqðKkðxÞ � LÞÞ ! 0;

(

as n!1 for some L

)
;

w0ðK;F; qÞ ¼ x 2 wðXÞ :
1

n

Xn
k¼1

fkðqðKkðxÞÞÞ ! 0; as n!1
( )

and

w1ðK;F; qÞ ¼ x 2 wðXÞ : sup
n

1

n

Xn
k¼1

fkðqðKkðxÞÞÞ <1
( )

:

The following inequality will be used throughout the paper.

If 0 < h ¼ inf pk 6 pk 6 sup pk ¼ H; D ¼ maxð1; 2H�1Þ then
jak þ bkjpk 6 Dfjakjpk þ jbkjpkg ð1:1Þ

for all k and ak; bk 2 C. Also jajpk 6 maxð1; jajHÞ for all a 2 C.
The main purpose of this paper is to introduce the sequence

spaces defined by a sequence of modulus function F ¼ ðfkÞ. We
study some topological properties and prove some inclusion
relations between these spaces.

2. Main results

Theorem 2.1. Let F ¼ ðfkÞ be a sequence of modulus function,
p ¼ ðpkÞ be a bounded sequence of positive real numbers. Then

wðK;F; p; qÞ; w0ðK;F; p; qÞ and w1ðK;F; p; qÞ are linear spaces
over the field of complex numbers C.

Proof. Let x; y 2 w0ðK;F; p; qÞ and a; b 2 C, there exists Ma

and Nb integers such that jaj 6Ma and jbj 6 Nb. Since F is

subadditive and q is a seminorm. Therefore

1

n

Xn
k¼1
½fkðqðKkðaxþbyÞÞÞ�pk 61

n

Xn
k¼1
½ðfkjajqðKkðxÞÞþ fkjbjqðKkðyÞÞÞ�pk

6DðMaÞH
1

n

Xn
k¼1
½fkðqðKkðxÞÞÞ�pk

þDðNbÞH
1

n

Xn
k¼1
½fkðqðKkðyÞÞÞ�pk!0:

This proves that w0ðK;F; p; qÞ is a linear space. Similarly,
we can prove that wðK;F; p; qÞ and w1ðK;F; p; qÞ are linear

spaces. h

Theorem 2.2. Let F ¼ ðfkÞ be a sequence of modulus function,
p ¼ ðpkÞ be a bounded sequence of positive real numbers. Then
w0ðK;F; p; qÞ is a paranormed space with paranorm

gðxÞ ¼ sup
n

1

n

Xn
k¼1
½fkðqðKkðxÞÞÞ�pk

( ) 1
M

;

where H ¼ sup pk <1 and M ¼ maxð1;HÞ.

Proof. Clearly, gðxÞ ¼ gð�xÞ; x ¼ h implies KkðxÞ ¼ h and

such that qðhÞ ¼ 0 and fkð0Þ ¼ 0, where h is the zero sequence.
Therefore gðhÞ ¼ 0. Since pk=M 6 1 and M P 1, using the
Minkowski’s inequality and definition of F ¼ ðfkÞ for each n,
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