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Abstract In this article using the concept of ideal and lacunary sequence we introduce the concept

of lacunary I-convergent, lacunary I-Cauchy and lacunary I�-convergent sequences in probabilistic

n-normed space.We obtain some results related to these concepts. Also the concept of lacunary

refinement of a lacunary sequence is discussed in probabilistic n-normed space.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 40A05; 40A35; 60B10; 60B99

ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

The notion of probabilistic metric spaces was introduced by

Menger [1]. The idea of Menger was to use distribution func-
tion instead of non-negative real numbers as values of the met-
ric. After that it was developed by many authors. Using this
concept, Serstnev [2] introduced the concept of probabilistic

normed space. Its theory is important as a generalization of
deterministic results of linear normed spaces and also in the
study of random operator equations. The theory of 2-norm

and n-norm on a linear space was introduced by Gahler
([3,4]) which was later developed by Tripathy and Borgohain
[5], Tripathy and Dutta [6] and many others.

The notion of I-convergence was studied at the initial stage
by Kostyrko et al. [7]. Later on it was further investigated by
Tripathy and Hazarika ([8–11]) Salat et al. [12], Tripathy

and Mahanta [13], Tripathy et al. [14] and many others from
different aspects.

Now we recall some notations and definitions which will be

used in this paper.

Definition 1.1. A probabilistic n-normed linear space or in
short Pr-n-space is a triplet ðX; m; �Þ, where X is a real linear
space of dimension greater than one, m is a mapping from Xn

into D and �, a continuous t-norm satisfying the following
conditions for every x1; x2; . . . ; xn 2 X and s; t > 0:

ðiÞ mððx1; x2; . . . ; xnÞ; tÞ ¼ 1 if and only if x1; x2; . . . ; xn are
linearly dependent.
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ðiiÞ mððx1; x2; . . . ; xnÞ; tÞ is invariant under any permutation of

x1; x2; . . . ; xn.
ðiiiÞ mððx1; x2; . . . ; axnÞ; tÞ ¼ mððx1; x2; . . . ; xnÞ; t

jajÞ if a–0; a 2 R.
ðivÞ mððx1; x2; . . . ; xn þ x0nÞ; sþ tÞP mððx1; x2; . . . ; xnÞ; sÞ � mððx1;

x2; . . . ; x0nÞ; tÞ.

Example 1.1. Let ðX; jjð�; �; . . . ; �ÞjjÞ be an n-normed linear
space. Also let a � b ¼ minfa; bg, for a; b 2 ½0; 1�, and mððx1;
x2; . . . ; xnÞ; tÞ ¼ t

tþkðx1 ;x2 ;...;xnÞk. Then ðX; m; �Þ is an Pr-n-space.

Definition 1.2. Let ðX; m; �Þ be an Pr-n-space. A sequence
x ¼ fxkg in X is said to be convergent to L 2 X with respect
to the probabilistic n-norm mn if for every e > 0; k 2 ð0; 1Þ
and y1; y2; . . . ; yn�1 2 X, there exists k0 2 N such that
mððy1; y2; . . . ; yn�1; xk � LÞ; eÞ > 1� k, for all k P k0 and we
write mn � lim xk ¼ L.

Definition 1.3. Let ðX; m; �Þ be a Pr-n-space. A sequence fxkg in
X is said to be a Cauchy sequence with respect to the probabi-
listic n-norm mn if given e > 0; k 2 ð0; 1Þ and y1; y2; . . . ; yn�1 2
X, there exists k0 2 N such that mððy1; y2; . . . ; yn�1; xk � xmÞ;
eÞ > 1� k, for all k;m P k0.

Definition 1.4. Let X be a non-empty set. A non-void class
I# 2X (power set of X) is called an ideal if I is additive

(i.e.A;B 2 I) A [ B 2 I) and hereditary (i.e. A 2 I and
B#A) B 2 I).

Definition 1.5. A non-empty family of sets I � 2X is said to be

a filter on X if and only if ; R I, for each A;B 2 I, we have

A \ B 2 I and for each A 2 I and B � A;B 2 I.

For each ideal I there is a filter IðIÞ corresponding to I,
given by

IðIÞ ¼ fK# N : N n K 2 Ig:

An ideal I is called non-trivial if I–; and X R I. A non-triv-
ial ideal I is said to be an admissible ideal if it contains all sin-

gleton sets.
The usual convergence is a particular case of I-convergence.

In this case I ¼ If (the ideal of all finite subsets of N).

Definition 1.6. By a lacunary sequence we mean an increasing
integer sequence h ¼ ðkrÞ; r ¼ 0; 1; 2; . . . such that k0 ¼ 0 and
hr ¼ kr � kr�1 !1 as r!1. The intervals determined by h

will be denoted by Ir ¼ ðkr�1; kr� and the ratio kr
kr�1

will be

abbreviated by qr.

The notion of lacunary sequence spaces has been investi-
gated from different aspects by Tripathy and Baruah [15],
Tripathy and Dutta [16], Tripathy and Mahanta [17] and many

others in the recent years from different aspects.

2. Lacunary I-convergence in Pr-n-space

Definition 2.1. Let ðX; m; �Þ be a Pr-n-space and h ¼ ðkrÞ be a

lacunary sequence. A sequence x ¼ fxig in X is said to be
lacunary convergent to L 2 X with respect to the probabilistic
n-norm mn if for every e > 0 and k 2 ð0; 1Þ; y1; y2; . . . ; yn�1 2 X,

there exists r0 2 N such that

1

hr

X
i2Ir

mððy1; y2; . . . ; yn�1; xi � LÞ; eÞ > 1� k;

for all r P r0 and we write ðmnÞh � lim xk ¼ Ł.

Definition 2.2. Let ðX; m; �Þ be a Pr-n-space and h ¼ ðkrÞ be a
lacunary sequence. A sequence x ¼ fxig in X is said to be lacu-

nary I-convergent to L 2 X with respect to the probabilistic
n-norm mn if for every e > 0; k 2 ð0; 1Þ and y1; y2; . . . ; yn�1
2 X, the set

r 2 N :
1

hr

X
i2Ir

mððy1; y2; . . . ; yn�1; xi � LÞ; eÞ 6 1� k

( )
2 I

and we write IhmðnÞ � lim xk ¼ Ł.

Theorem 2.1. Let ðX; m; �Þ be a Pr-n-space and h be a fixed lacu-

nary sequence. If a sequence x ¼ fxig is lacunary I-convergent
with respect to the probabilistic n-norm mn, then IhmðnÞ -limit is
unique.

Proof. Let us assume that IhmðnÞ � lim xk ¼ L1 and IhmðnÞ � lim xk

¼ L2.

For a given k > 0, choose g 2 ð0; 1Þ such that

ð1� gÞ � ð1� gÞ > 1� k. Then for any e > 0, we define the
following sets:

Km;1ðg; eÞ ¼ r2N :
1

hr

X
i2Ir

mððy1;y2; . . . ;yn�1;xi�L1Þ; eÞ> 1� g

( )

and Km;2ðg; eÞ ¼ r2N :
1

hr

X
i2Ir

mððy1;y2; . . . ;yn�1;xi�L2Þ;eÞ> 1�g

( )
:

Since IhmðnÞ � lim xk ¼ L1, so Km;1ðg; eÞ 2 IðIÞ, for all e > 0.

Also IhmðnÞ � lim xk ¼ L2 gives Km;2ðg; eÞ 2 IðIÞ, for all e > 0.

Now let Kmðg; eÞ ¼ Km;1ðg; eÞ \ Km;2ðg; eÞ. Then Kmðg; eÞ 2
IðIÞ.

Now if r 2 Kmðg; eÞ, then we have

1

hr

X
i2Ir

m y1; y2; . . . ; yn�1;L1 � L2ð Þ; eð Þ

P
1

hr

X
i2Ir

m y1; y2; . . . ; yn�1; xi � L1ð Þ; e
2

� �

� 1
hr

X
i2Ir

m y1; y2; . . . ; yn�1; xi � L2ð Þ; e
2

� �
> ð1� gÞ � ð1� gÞ > 1� k:

Since k > 0 is arbitrary, we have

1

hr

X
i2Ir

mððy1; y2; . . . ; yn�1;L1 � L2Þ; eÞ ¼ 1;

for all e > 0, which gives L1 ¼ L2. Therefore I
h
mðnÞ -limit of ðxnÞ is

unique. h

Theorem 2.2. Let ðX; m; �Þ be a Pr-n-space, h be a lacunary
sequence and x ¼ fxig; y ¼ fyig be two sequences in X. Then

ðiÞ If Ih
mðnÞ � lim xk ¼ L and a 2 R, then Ih

mðnÞ � lim axk ¼ aL.
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