

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

Lacunary *I*-convergence in probabilistic *n*-normed space

Binod Chandra Tripathy ^{a,*}, Mausumi Sen ^b, Soumitra Nath ^c

^a Mathematical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781 035, Assam, India

^b National Institute of Technology, Silchar 788 010, Assam, India

^c Silchar Polytechnic, Silchar 788 015, Assam, India

Received 30 July 2013; revised 21 March 2014; accepted 31 March 2014 Available online 10 May 2014

KEYWORDS

Ideal; *I*-Convergent; *I*-Cauchy; Probabilistic *n*-normed spaces; Lacunary sequence **Abstract** In this article using the concept of ideal and lacunary sequence we introduce the concept of lacunary *I*-convergent, lacunary *I*-Cauchy and lacunary *I**-convergent sequences in probabilistic *n*-normed space.We obtain some results related to these concepts. Also the concept of lacunary refinement of a lacunary sequence is discussed in probabilistic *n*-normed space.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 40A05; 40A35; 60B10; 60B99

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

The notion of probabilistic metric spaces was introduced by Menger [1]. The idea of Menger was to use distribution function instead of non-negative real numbers as values of the metric. After that it was developed by many authors. Using this concept, Serstnev [2] introduced the concept of probabilistic normed space. Its theory is important as a generalization of deterministic results of linear normed spaces and also in the study of random operator equations. The theory of 2-norm

ELSEVIER

Production and hosting by Elsevier

and *n*-norm on a linear space was introduced by Gahler ([3,4]) which was later developed by Tripathy and Borgohain [5], Tripathy and Dutta [6] and many others.

The notion of *I*-convergence was studied at the initial stage by Kostyrko et al. [7]. Later on it was further investigated by Tripathy and Hazarika ([8–11]) Salat et al. [12], Tripathy and Mahanta [13], Tripathy et al. [14] and many others from different aspects.

Now we recall some notations and definitions which will be used in this paper.

Definition 1.1. A probabilistic *n*-normed linear space or in short Pr-n-space is a triplet (X, v, *), where X is a real linear space of dimension greater than one, v is a mapping from X^n into D and *, a continuous *t*-norm satisfying the following conditions for every $x_1, x_2, \ldots, x_n \in X$ and s, t > 0:

(i) $v((x_1, x_2, \dots, x_n), t) = 1$ if and only if x_1, x_2, \dots, x_n are linearly dependent.

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2014.03.008

^{*} Corresponding author.

E-mail addresses: tripathybc@yahoo.com, tripathybc@rediffmail.com (B.C. Tripathy), sen_mausumi@rediffmail.com (M. Sen), soumitranath70 @yahoo.in (S. Nath).

Peer review under responsibility of Egyptian Mathematical Society.

- (*ii*) $v((x_1, x_2, \dots, x_n), t)$ is invariant under any permutation of x_1, x_2, \dots, x_n .
- (*iii*) $v((x_1, x_2, \ldots, \alpha x_n), t) = v((x_1, x_2, \ldots, x_n), \frac{t}{|\alpha|})$ if $\alpha \neq 0, \alpha \in \mathbb{R}$.
- (*iv*) $v((x_1, x_2, \dots, x_n + x'_n), s + t) \ge v((x_1, x_2, \dots, x_n), s) * v((x_1, x_2, \dots, x'_n), t).$

Example 1.1. Let $(X, ||(\bullet, \bullet, ..., \bullet)||)$ be an *n*-normed linear space. Also let $a * b = \min\{a, b\}$, for $a, b \in [0, 1]$, and $v((x_1, x_2, ..., x_n), t) = \frac{t}{t + ||(x_1, x_2, ..., x_n)||}$. Then (X, v, *) is an Pr-n-space.

Definition 1.2. Let (X, v, *) be an Pr-n-space. A sequence $x = \{x_k\}$ in X is said to be convergent to $L \in X$ with respect to the probabilistic *n*-norm v^n if for every $\varepsilon > 0, \lambda \in (0, 1)$ and $y_1, y_2, \ldots, y_{n-1} \in X$, there exists $k_0 \in \mathbb{N}$ such that $v((y_1, y_2, \ldots, y_{n-1}, x_k - L), \varepsilon) > 1 - \lambda$, for all $k \ge k_0$ and we write $v^n - \lim x_k = L$.

Definition 1.3. Let (X, v, *) be a Pr-n-space. A sequence $\{x_k\}$ in X is said to be a Cauchy sequence with respect to the probabilistic *n*-norm v^n if given $\varepsilon > 0, \lambda \in (0, 1)$ and $y_1, y_2, \ldots, y_{n-1} \in X$, there exists $k_0 \in \mathbb{N}$ such that $v((y_1, y_2, \ldots, y_{n-1}, x_k - x_m), \varepsilon) > 1 - \lambda$, for all $k, m \ge k_0$.

Definition 1.4. Let *X* be a non-empty set. A non-void class $I \subseteq 2^X$ (power set of *X*) is called an ideal if *I* is additive (i.e. $A, B \in I \Rightarrow A \cup B \in I$) and hereditary (i.e. $A \in I$ and $B \subseteq A \Rightarrow B \in I$).

Definition 1.5. A non-empty family of sets $\mathfrak{I} \subset 2^X$ is said to be a filter on X if and only if $\emptyset \notin \mathfrak{I}$, for each $A, B \in \mathfrak{I}$, we have $A \cap B \in \mathfrak{I}$ and for each $A \in \mathfrak{I}$ and $B \supset A, B \in \mathfrak{I}$.

For each ideal I there is a filter $\Im(I)$ corresponding to I, given by

 $\mathfrak{I}(I) = \{ K \subseteq \mathbb{N} : \mathbb{N} \setminus K \in I \}.$

An ideal *I* is called non-trivial if $I \neq \emptyset$ and $X \notin I$. A non-trivial ideal *I* is said to be an admissible ideal if it contains all singleton sets.

The usual convergence is a particular case of *I*-convergence. In this case $I = I_{\ell}$ (the ideal of all finite subsets of \mathbb{N}).

Definition 1.6. By a lacunary sequence we mean an increasing integer sequence $\theta = (k_r), r = 0, 1, 2, ...$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r .

The notion of lacunary sequence spaces has been investigated from different aspects by Tripathy and Baruah [15], Tripathy and Dutta [16], Tripathy and Mahanta [17] and many others in the recent years from different aspects.

2. Lacunary I-convergence in Pr-n-space

Definition 2.1. Let (X, v, *) be a Pr-n-space and $\theta = (k_r)$ be a lacunary sequence. A sequence $x = \{x_i\}$ in X is said to be lacunary convergent to $L \in X$ with respect to the probabilistic *n*-norm v^n if for every $\varepsilon > 0$ and $\lambda \in (0, 1), y_1, y_2, \dots, y_{n-1} \in X$, there exists $r_0 \in N$ such that

$$\frac{1}{h_r}\sum_{i\in I_r} v((y_1, y_2, \dots, y_{n-1}, x_i - L), \varepsilon) > 1 - \lambda,$$

for all $r \ge r_0$ and we write $(v^n)^{\theta} - \lim x_k = \mathbf{L}$.

Definition 2.2. Let (X, v, *) be a Pr-n-space and $\theta = (k_r)$ be a lacunary sequence. A sequence $x = \{x_i\}$ in X is said to be lacunary *I*-convergent to $L \in X$ with respect to the probabilistic *n*-norm v^n if for every $\varepsilon > 0, \lambda \in (0, 1)$ and $y_1, y_2, \ldots, y_{n-1} \in X$, the set

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{i \in I_r} \nu((y_1, y_2, \dots, y_{n-1}, x_i - L), \varepsilon) \leqslant 1 - \lambda\right\} \in I$$

and we write $I_{\nu(n)}^{\theta} - \lim x_k = \mathbf{L}.$

Theorem 2.1. Let (X, v, *) be a Pr-n-space and θ be a fixed lacunary sequence. If a sequence $x = \{x_i\}$ is lacunary I-convergent with respect to the probabilistic n-norm v^n , then $I^{\theta}_{v^{(n)}}$ -limit is unique.

Proof. Let us assume that $I_{v^{(n)}}^{\theta} - \lim x_k = L_1$ and $I_{v^{(n)}}^{\theta} - \lim x_k = L_2$.

For a given $\lambda > 0$, choose $\eta \in (0, 1)$ such that $(1 - \eta) * (1 - \eta) > 1 - \lambda$. Then for any $\varepsilon > 0$, we define the following sets:

$$K_{\nu,1}(\eta,\varepsilon) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{i \in I_r} \nu((y_1, y_2, \dots, y_{n-1}, x_i - L_1), \varepsilon) > 1 - \eta \right\}$$

and $K_{\nu,2}(\eta,\varepsilon) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{i \in I_r} \nu((y_1, y_2, \dots, y_{n-1}, x_i - L_2), \varepsilon) > 1 - \eta \right\}.$

Since $I_{\nu^{(\eta)}}^{\theta} - \lim x_k = L_1$, so $K_{\nu,1}(\eta, \varepsilon) \in \mathfrak{I}(I)$, for all $\varepsilon > 0$. Also $I_{\nu^{(\eta)}}^{\theta} - \lim x_k = L_2$ gives $K_{\nu,2}(\eta, \varepsilon) \in \mathfrak{I}(I)$, for all $\varepsilon > 0$. Now let $K_{\nu}(\eta, \varepsilon) = K_{\nu,1}(\eta, \varepsilon) \cap K_{\nu,2}(\eta, \varepsilon)$. Then $K_{\nu}(\eta, \varepsilon) \in \mathfrak{I}(I)$.

Now if $r \in K_{\nu}(\eta, \varepsilon)$, then we have

$$\begin{split} \frac{1}{h_r} \sum_{i \in I_r} & v((y_1, y_2, \dots, y_{n-1}, L_1 - L_2), \varepsilon) \\ \geqslant \frac{1}{h_r} \sum_{i \in I_r} & v\left((y_1, y_2, \dots, y_{n-1}, x_i - L_1), \frac{\varepsilon}{2}\right) \\ & * \frac{1}{h_r} \sum_{i \in I_r} & v\left((y_1, y_2, \dots, y_{n-1}, x_i - L_2), \frac{\varepsilon}{2}\right) \\ & > (1 - \eta) * (1 - \eta) > 1 - \lambda. \end{split}$$

Since $\lambda > 0$ is arbitrary, we have

$$\frac{1}{h_r} \sum_{i \in I_r} v((y_1, y_2, \dots, y_{n-1}, L_1 - L_2), \varepsilon) = 1$$

for all $\varepsilon > 0$, which gives $L_1 = L_2$. Therefore $I_{\nu^{(n)}}^{\theta}$ -limit of (x_n) is unique. \Box

Theorem 2.2. Let (X, v, *) be a Pr-n-space, θ be a lacunary sequence and $x = \{x_i\}, y = \{y_i\}$ be two sequences in X. Then

(i) If $I_{v^{(n)}}^{\theta} - \lim x_k = L$ and $\alpha \in \mathbb{R}$, then $I_{v^{(n)}}^{\theta} - \lim \alpha x_k = \alpha L$.

Download English Version:

https://daneshyari.com/en/article/483820

Download Persian Version:

https://daneshyari.com/article/483820

Daneshyari.com