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Abstract In this paper we introduce a new integration operator S
ðnÞ
g;/, where

S
ðnÞ
g;/ ¼

Z z

0

/ðnÞð fðnÞÞgðnÞdn:

We characterize all entire functions that transform a Bloch-type space into another by this new

integration operator. Also, we prove that all generalized superposition operators induced by such

entire functions are bounded.
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1. Introduction

Let HðDÞ denote the space of all analytic functions on the unit
disk D of C. Let / be analytic self-map of D; n be a positive
integer and g 2 HðDÞ. Let X and Y be two metric spaces of

analytic functions on the unit disk and / denotes a complex-
valued function of the plan C. The superposition operator
S/ on X is defined by

S/ð f Þ ¼ / � f; f 2 X:

If S/ f 2 Y for f 2 X, we say that / acts by superposition from

X into Y. We see that if X contains linear functions, / must be

an entire function. Let HðDÞ be the class of all analytic

function on D, then for g 2 HðDÞ, we define a new nonlinear
superposition operator as follows:

ðSðnÞg;/ f ÞðzÞ ¼
Z z

0

/ðnÞð fðnÞÞgðnÞdn:

The operator S
ðnÞ
g;/ is called the generalized superposition oper-

ator. When g ¼ f 0 and n ¼ 1, we see that this operator is essen-

tially superposition operator, since the following difference
S
ðnÞ
g;/ � S/ is a constant. Therefore, S

ðnÞ
g;/ is a generalization of

the superposition operator. To the best of our Knowledge,

the operator S
ðnÞ
g;/ is introduced in the present paper for the first

time. The graph of S
ðnÞ
g;/ is usually closed but, since the operator

is nonlinear, this is not enough to assure its boundedness.
Nonetheless, for a number of important spaces X; Y, such

as Hardy, Bergman, Dirichlet, and Bloch, the mere action
S
ðnÞ
g;/ : X! Y implies that / must belong to a very special class

of entire functions, which in turn implies boundedness.
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Wen Xu studied superposition operators on Bloch-type
spaces in [1].

In this paper we give a complete description of the general-

ized superpositions on Bloch-type spaces in terms of the order
and type of / and the degree of polynomials.

Let D ¼ fz 2 C : jzj < 1g be the open unit disk in the com-

plex plane C. Recall that the well known Bloch space (cf. [2]) is
defined as follows:

B ¼ ff : f analytic in D and sup
z2D
ð1� jzj2Þj f 0ðzÞj <1g;

the little Bloch space B0 (cf. [2]) is a subspace of B consisting of
all f 2 B such that

lim
jzj!1�

ð1� jzj2Þj f 0ðzÞj ¼ 0:

Definition 1.1 [3]. Let f be an analytic function in D and

0 < a <1. The a-Bloch space Ba is defined by

Ba ¼ ff 2 HðDÞ : k fkBa ¼ sup
z2D
ð1� jzj2Þaj f 0ðzÞj <1g;

the little a-Bloch space Ba
0 is given as follows

Ba
0 ¼ ff 2 HðDÞ : k fkBa

0
¼ lim
jzj!1�

ð1� jzj2Þaj f 0ðzÞj ¼ 0g:

The spaces B1 and B1
0 are called the Bloch space and denoted

by B and B0 respectively (see [4]).

As a simple example one can get that the function
fðzÞ ¼ logð1� zÞ is a Bloch function but fðzÞ ¼ log2ð1� zÞ is
not a Bloch function.

Definition 1.2 (see [5]). For p 2 ð0;1Þ and �1 < a <1, the

Bergman-type spaces Ap
a are defined by

Ap
a ¼ f f 2 HðDÞ : k fkAp

a
¼ sup

z2D
j fðzÞjpð1� jzj2Þa <1g:

Moreover, f 2 A0;a; if and only if

lim
jzj!1�

sup
z2D
j fðzÞjð1� jzj2Þa ¼ 0:

Conformally invariant spaces of the disk: It is a standard

fact that the set of all disk automorphisms (i.e., of all one-
to-one analytic maps u of D onto itself\,), denoted AutðDÞ,
coincides with the set of all Möbius transformations of D onto
itself:

AutðDÞ ¼ fkua : jkj ¼ 1; a 2 Dg;

where uaðzÞ ¼ a�z
1��az

are the automorphisms: uaðuaðzÞÞ � z.

A space X of analytic functions in D, equipped with a semi-
norm q, is said to be conformally invariant or Möbius invari-
ant if whenever f 2 X, then also f � u 2 X for any u 2 AutðDÞ
and, moreover, qð f � uÞ 6 Cqð f Þ for some positive constant

C and all f 2 X.

Definition 1.3. In topology, a geometrical object or space is
called simply connected (or 1-connected) if it is path-connected

and every path between two points can be continuously
transformed into every other while preserving the two
endpoints in question.

Definition 1.4. A path from a point x to a point y in a topolog-

ical space X is a continuous function f from the unit interval
½0; 1� to X with fð0Þ ¼ x and fð1Þ ¼ y. A path-component of
X is an equivalence class of X under the equivalence relation

defined by x is equivalent to y if there is a path from x to y.
The space X is said to be path-connected (or path-wise con-
nected or 0-connected) if there is only one path-component,
i.e. if there is a path joining any two points in X.

Remark 1.1. Every path-connected space is connected. The
converse is not always true.

In this section, we give some auxiliary results which are
incorporated in the following lemmas.

Lemma 1.1. Let and f 2 Ba and 0 < a <1. Suppose that

Ia ¼
Z 1

0

jzjdt
ð1� t2jzj2Þa

<1: ð1Þ

Then we have,

j fðzÞj 6 j fð0Þj þ Ck f kBa ;

for some C > 0 independent of f.

Proof. Let jzj > 1
2
; z ¼ rn, and n 2 @D. We have

f ðzÞ � f
rn
2

� �����
���� ¼

Z 1

1
2

zf0ðtzÞdt
�����

����� 6
Z 1

1
2

jzk f 0ðtzÞjdt

6 2k fkBa

Z 1

0

jzjdt
ð1� t2jzj2Þa

6 Ck fkBa :

Also, we have

j fðzÞj 6 max
jzj61

2

j fðzÞj þ Ck fkBa : ð2Þ

Let jzj 6 1
2
, then, by the mean value property of the function

fðzÞ � fð0Þ (see [6]) and Jensen’s inequality, we obtain

max
jzj61

2

j fðzÞ � fð0Þj 6 4n
Z
jzj63

4

j fðwÞ � fð0ÞjdAðwÞ

6 4n
Z
jzj63

4

j f 0ðwÞj2dAðwÞ 6 3nmax
jzj63

4

j f 0ðwÞj2:

The second inequality can be easily proved by using the homo-
geneous expansion of f.

Hence,

max
jzj61

2

j fðzÞj 6 j fð0Þj þ ð
ffiffiffi
3
p
Þ
n
max
jzj63

4

j f 0ðzÞj

6 j fð0Þj þ 24að
ffiffiffi
3
p
Þn

7a k fkBa : ð3Þ

From (2) and (3), the result follows easily when a – 1. If a ¼ 1,

then we have

j fðzÞj 6 j fð0Þj þ 16ð
ffiffiffi
3
p
Þn

7
k fkB1 þ Ck fkB1

6 j fð0Þj þ 16ð
ffiffiffi
3
p
Þn

7
þ C

 !
k fkB1 :

This complete the proof. h
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