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Abstract A Bubnov-Galerkin finite element method with quintic B-spline functions taken as ele-

ment shape and weight functions is presented for the solution of the KdV equation. To demonstrate

the accuracy, efficiency and reliability of the method three experiments are undertaken for both the

evolution of a single solitary wave and the interaction of two solitary waves. The numerical results

are compared with analytical solutions and the numerical results in the literature. It is shown that

the method presented is accurate, efficient and can be used at small times when the analytical solu-

tion is not known.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

1. Introduction

In this paper we consider the Korteweg-de Vries (KdV) equa-

tion in the form,

Ut þ eUUx þUxxx ¼ 0 a 6 x 6 b ð1Þ

whereU(x, t) is an appropriate field variable, e and l are positive
parameters, and the subscripts t and x denote differentiation

with respect to the time and the space, respectively. The KdV

Eq. (1) is a one-dimensional non-linear partial differential equa-
tion (PDE) of third order, which plays a major role in the study
of non-linear dispersive waves. This equation was originally de-

rived by Korteweg-de Vries [1] to describe the behavior of one-
dimensional shallow water solitary waves. Solitary waves are
wave packets or pulses which propagate in non-linear dispersive

media. For stable solitary wave solutions the non-linear and dis-
persive terms in the KdV Eq. (1) must balance, and in this case
the KdV equation has traveling wave solutions called solitons.

A soliton is a very special type of solitary waves which keeps
its waveform after collision with other solitons.

A small time solutions using a heat balance integral (HBI)
method to solve the KdV equation was obtained by Kutluay

et al. [2]. In their paper, extensive comparisons with the analyt-
ical values over the defined interval are given. Bahadir [3] used
the exponential finite-difference (EFD) technique to solve the

KdV equation. This method has been shown to provide higher
accuracy than the classical explicit finite difference and the HBI
method. Ozer and Kutluay [4] used an analytical–numerical
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(AN) method, for solving the KdV equation and the obtained

results are compared with that of the HBI method and the cor-
responding analytical solution. Irk et al. [5] used a second order
spline approximation (SA) technique and made comparisons
with earlier methods. Ozdes and Aksan [6] used the method

of lines (MOL) for solving the KdV equation and also in [7]
used a quadratic B-spline Galerkin finite element (QBGFE)
method and compared these techniques with the analytical

solutions and other numerical solutions that are obtained ear-
lier using various numerical techniques.

In this paper, we present an algorithm for solving Eq. (1) by

applying Bubnov Galerkin finite element method. The time
integration of the resulting system is carried out using
Crank–Nicholson scheme. Evolution and interaction of soli-

tary waves with various amplitudes are undertaken.
The presence of the third spatial derivative in Eq. (1) re-

quires that the interpolation functions and their first and sec-
ond derivatives must be continuous throughout the region of

solution. When using Bubnov Galerkin, the quintic B-splines
interpolation functions can be used with partial differential
equations containing derivatives up to order four.

The results obtained are compared with their corresponding
analytical solutions and also with the various numerical meth-
ods mentioned above. To check accuracy, efficiency and reli-

ability of the scheme presented we evaluate the invariants
and error norms for the simulations undertaken.

2. Finite element scheme

A numerical solution to the KdV Eq. (1) is sought over the fi-
nite region [a,b] with boundary conditions as will be pre-

scribed. Let a = x0 < x1 < . . . < xN = b be a partition of
[a,b] by the equally spaced knots xi and let /i(x) be those quin-
tic B-splines with knots at the points xi, 0 < i< N. The set of

splines {/i�2,/i�1,/i,/i+1,/i+2,/i+3} forms a basis for func-
tions defined over the finite region [a,b]. We seek the approx-
imation UN(x, t) to the solution U(x, t) which uses

UNðx; tÞ ¼
XNþ2
i¼�2

/iðxÞuiðtÞ ð2Þ

where the ui are time dependent parameters to be determined
from the boundary conditions and from conditions to be deter-
mined herein.

Uða; tÞ ¼ Uðb; tÞ ¼ 0; Uxða; tÞ ¼ Uxðb; tÞ ¼ 0 ð3Þ

We identify the finite elements with the intervals [xi,xi+1] with
nodes at xi and xi+1. Each quintic B-splines covers six elements:
consequently each element [xi,xi+1] is covered by six splines

(/i�2,/i�1,/i,/i+1,/i+2,/i+3) which are given in terms of a
local coordinate system f given by hf = (x � xi) where
h = xi+1 � xi and 0 6 f 6 1. Leads to the following expressions

for these splines over the element [xi,xi+1] are [8,9],

/i�2 ¼ 1� 5fþ 10f2 � 10f3 þ 5f4 � f5

/i�1 ¼ 26� 50fþ 20f2 þ 20f3 � 20f4 þ 5f5

/i ¼ 66� 60f2 þ 30f4 � 10f5

/iþ1 ¼ 26þ 50fþ 20f2 � 20f3 � 20f4 þ 10f5

/iþ2 ¼ 1þ 5fþ 10f2 þ 10f3 þ 5f4 � 5f5

/iþ3 ¼ f5

ð4Þ

The spline /i(x) and its three derivatives vanish outside the

interval [xi�3,xi+3]. These spline act like ‘‘shape’’ functions
for the element when we set up equations in terms of the ele-
ment parameters uei using Eq. (4). The variation of UN(x, t)

over the element [xi�3,xi+3] is given by

ueðx; tÞ ¼
Xiþ3
j¼i�2

/jðxÞujðtÞ ð5Þ

The nodal value of UN(x, t) and the derivatives at the knots are

given in terms of the element parameters by

Ui ¼ ui�2 þ 26ui�1 þ 66ui þ 26uiþ1 þ uiþ2;

hU0i ¼ 5ðuiþ2 þ 10uiþ1 � 10ui�1 � ui�2Þ;
h2U00i ¼ 20ðui�2 þ 2ui�1 � 6ui þ 2uiþ1 þ uiþ2Þ;
h3U000i ¼ 60ðuiþ2 � 2uiþ1 þ 2ui�1 � ui�2Þ;
h4U

0000

i ¼ 120ðui�2 � 4ui�1 þ 6ui � 4uiþ1 þ uiþ2Þ;

ð6Þ

where the dashes denote differentiation with respect to x. An
application of the Galerkin’s method to Eq. (1) with weight
functions W(x), leads toZ b

a

WðUt þ eUUx þ lUxxxÞdx ¼ 0 ð7Þ

Now, we set up the relevant element matrices. For typical ele-

ment [xi,xi+1] we have the contribution,Z
e

Wðuet þ eueuex þ luexxxÞdx

Replacing the weight function W(x) and the unknown val-

ues u(t) from (5) by B-spline shape functions (4),

Xlþ3
i¼l�2

Z xlþ1

xl

/k/idx

� �
_uei þ e

Xlþ3
j¼l�2

Xlþ3
i¼l�2

Z xlþ1

xl

/k/i/
0
jdx

� �
uei u

e
j

þ l
Xlþ3
i¼l�2

Z xlþ1

xl

/kphi
m
i dx

� �
uei ð8Þ

which in matrix form is

Ae _ue þ eueTFeue þ lDeue ð9Þ

Where

ue ¼ ðul�2; ul�1; ul; ulþ1; ulþ2; ulþ3ÞT: ð10Þ

The element matrices are given by the integrals

Ae
ij ¼

R xlþ1
xl

/i/kdx;

Fe
ijk ¼

R xlþ1
xl

/i/
0
j/kdx;

De
ij ¼

R xlþ1
xl

/000i /jdx;

ð11Þ

where i, j, k take only l � 2, l � 1, l, l+ 1, l + 2, l+ 3 for this
element [xl,xl+1]. The matrices Ae,De are therefore 6 · 6 and

Fe is 6 · 6 · 6. We use the associated 6 · 6 matrix Le instead
of Fe in our algorithm

Le
ij ¼

Xlþ3
k¼l�2

Fe
ijku

e
k; ð12Þ

which depends upon the parameters uek. The element matrices
Ae, Fe, De can be determined algebraically from Eq. (11),
(see Appendix A), where uek is given by Eq. (10). The assembly

of the element Eq. (9) leads to the equation

Auþ ðeLþ lDÞu ¼ 0 ð13Þ
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