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Abstract The main aim of the present note is to establish new Hadamard like integral inequalities

involving log-convex function. We also prove some Hadamard-type inequalities, and applications

to the special means are given.
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1. Introduction

Logarithmically convex (log-convex) functions are of interest

in many areas of mathematics and science. They have been
found to play an important role in the theory of special func-
tions and mathematical statistics (see, e.g., [1–4]).

Let I be an interval of real numbers. The function f : I! R

is said to be convexon I if for all x, y 2 I and t 2 [0,1], one has
the inequality:

fðtxþ ð1� tÞyÞ 6 tfðxÞ þ ð1� tÞfðyÞ: ð1:1Þ

A function f:I fi (0,1) is said to be log-convex or multiplica-
tively convex if log(f) is convex, or equivalently, if for all x,

y 2 I and t 2 [0,1], one has the inequality (see [4, p. 7]):

fðtxþ ð1� tÞyÞ 6 ½fðxÞ�t½fðyÞ�1�t: ð1:2Þ

We note that if f and g are convex functions and g is mono-
tonic nondecreasing, then gof is convex. Moreover, since
f= exp(logf), it follows that a log-convex function is convex,

but the converse is not true [4, p. 7]. This fact is obvious from
(1.2) as by the arithmetic-geometric mean inequality, we have

½fðxÞ�t½fðyÞ�1�t 6 tfðxÞ þ ð1� tÞfðyÞ ð1:3Þ

for all x, y 2 I and t 2 [0,1].
If the above inequality (1.2) is reversed, then f is called log-

arithmically concave, or simply log-concave. Apparently, it
would seem that log-concave (log-convex) functions would
be unremarkable because they are simply related to concave
(convex) functions. But they have some surprising properties.

It is well known that the product of log-concave (log-convex)
functions is also log-concave (log-convex). Moreover, the
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sum of log-convex functions is also log-convex, and a conver-
gent sequence of log-convex (log-concave) functions has a log-
convex (log-concave) limit function provided that the limit is

positive. However, the sum of log-concave functions is not nec-
essarily log-concave. Due to their interesting properties, the
log-convex (log-concave) functions frequently appear in many

problems of classical analysis and probability theory.
The next inequality (see for example [4, p.137]) is well

known in the literature as the Hermite–Hadamard inequality
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2

ð1:4Þ

where f : I! R is a convex function on the interval I of real
numbers a, b 2 I with a < b.

For some recent results related to this classic result, see the
books [1–4] and the papers [5–12] where further references are
given.

In [7], Dragomir and Mond proved that the following
inequalities of Hermite–Hadamard type hold for log-convex
functions:
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where Gðp; qÞ :¼ ffiffiffiffiffi
pq
p

is the geometric mean and
Lðp; qÞ :¼ p�q

ln p�ln q ðp–qÞ is the logarithmic mean of the positive
real numbers p, q (for p = q, we put L(p,p) = p).

In [8], Pachpatte proved that the inequalities hold for two
log-convex functions:

4

b� a

Z b

a

fðxÞgðxÞdx 6 ½fðaÞ þ fðbÞ�LðfðaÞ; fðbÞÞ þ ½gðaÞ

þ gðbÞ�LðgðaÞ; gðbÞÞ ð1:6Þ

In this paper, we prove another refinement of the Hermite–
Hadamard Inequality for log-convex functions. Some applica-
tions for special means are also given.

Throughout this paper, we will use the following notations
and conventions. Let I# R ¼ ð�1;þ1Þ, and a, b 2 I with
0 < a < b and

Aða; bÞ ¼ aþ b

2
; Gða; bÞ ¼

ffiffiffiffiffi
ab
p

; H ¼ Hða; bÞ ¼ 2ab

aþ b
;

Lða; bÞ ¼ b� a

ln b� ln a
; Kða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

2

s

be the arithmetic mean, geometric mean, harmonic mean, log-

arithmic mean, and quadratic mean, respectively.

2. Inequalities for log-convex functions

We shall start with the following refinement of the Hermite–
Hadamard inequality for log-convex functions.

Theorem 1. Let f:I fi (0,1) be a log-convex function on I and

a, b 2 I with a< b. Then, the following inequality holds:

1
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fðxÞfðaþ b� xÞdx

6 AðfðaÞ; fðbÞÞLðfðaÞ; fðbÞÞ: ð2:1Þ

Proof. Since f is log-convex function on I, we have that

fðtaþ ð1� tÞbÞ 6 ½fðaÞ�t½fðbÞ�1�t ð2:2Þ
fðð1� tÞaþ tbÞ 6 ½fðaÞ�1�t½fðbÞ�t ð2:3Þ

for all a, b 2 I and t 2 [0,1]. It is easy to observe that
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Z 1

0

fðtaþ ð1� tÞbÞfðð1� tÞaþ tbÞdt: ð2:4Þ

Using the elementary inequality G(p,q) 6 K(p,q) (p,q P 0 real)

and making the change of variable, we get
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Rewriting (2.5), we get the required inequality in (2.1). The

proof is complete. h

The following theorem also holds.

Theorem 2. Let f:I fi (0,1) be an increasing and a log-convex
function on I and a,b 2 I with a < b. Then, the following
inequality holds:

LðfðaÞ; fðbÞÞf aþ b
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K2ðfðaÞ; fðbÞÞAðfðaÞ; fðbÞÞLðfðaÞ; fðbÞÞ þ 1 ð2:6Þ

Proof. Since f is log-convex function on I, we have that

fðtaþ ð1� tÞbÞ 6 ½fðaÞ�t½fðbÞ�1�t ð2:7Þ
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