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Abstract The aim of this paper is to study weak and strong convergence of an implicit random

iterative process with errors to a common random fixed point of two finite families of asymptoti-

cally nonexpansive random mappings in a uniformly convex separable Banach space.
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1. Introduction

Random approximations and random fixed point theorems are

stochastic generalizations of classical approximations and
fixed point theorems. The study of random fixed point theo-
rems was initiated by Prague school of probabilities in the

1950s by Spacek [1] and Hans [2,3]. The interest in these prob-
lems was enhanced after the publication of the survey article of
Bharucha-Reid [4] in 1976. Random fixed point theory and

applications have been further developed rapidly in recent
years (see e.g. [5–12] and references therein).

The class of asymptotically nonexpansive self-mappings
introduced by Goebel and Kirk [13] in 1972. In 2001, Xu

and Ori [14] introduced the following implicit iteration process
{xn} defined by

xn ¼ anxn�1 þ ð1� anÞTnðmodNÞxn; n P 1; x0 2 K; ð1:1Þ

for a finite family of nonexpansive mappings {T1, T2, . . ., TN}:
K fi K, where K is a nonempty closed convex subset of a

Hilbert space E and {an}nP1 is a real sequence in (0, 1). They
proved the weakly convergence of the sequence {xn} defined
by (1.1) to a common fixed point p 2 F ¼ \N

i¼1FðTiÞ.
In 2003, Sun [15] introduced the following implicit iteration

process {xn} defined by

xn ¼ anxn�1 þ ð1� anÞTkðnÞ
iðnÞ xn; n P 1; x0 2 K; ð1:2Þ

for a finite family of asymptotically quasi-nonexpansive self-
mappings on a bounded closed convex subset K of a Hilbert
space E with {an}nP1 a sequence in (0, 1), where

n= (k(n) � 1)N+ i(n), i(n) 2 {1, 2, . . ., N}, and proved the
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strong convergence of the sequence {xn} defined by (1.2) to a

common fixed point p 2 F ¼ \Ni¼1FðTiÞ.
In 2010, Filomena Cianciaruso et al. [16] considered the

following implicit iterative process for a finite family of asymp-

totically nonexpansive mappings

xn ¼ ð1� an � cnÞxn�1 þ anT
kðnÞ
iðnÞ yn þ cnun;

yn ¼ ð1� bn � dnÞxn þ bnT
kðnÞ
iðnÞ xn þ dnvn; n P 1;

ð1:3Þ

where n = (k(n) � 1)N + i(n), i(n) 2 {1, 2, . . ., N}, {an}, {bn},
{cn}, {dn} are sequences of real numbers in (0, 1) with an +
cn 6 1 and bn + dn 6 1 for all n P 1 and {un}, {vn} are two
bounded sequences and x0 is a given point. They proved con-
vergence of the implicit iterative process defined by (1.3) to a

common fixed point of asymptotically nonexpansive mappings
in uniformly convex Banach spaces.

Very recently, Hao et al. [17] studied the convergence of an

implicit iterative process with errors for two finite families
fTigNi¼1; fSigNi¼1 : K! K of asymptotically nonexpansive map-
pings defined as follows:

xn ¼ ð1� an � cnÞxn�1 þ anT
kðnÞ
iðnÞ yn þ cnun;

yn ¼ ð1� bn � dnÞxn þ bnS
kðnÞ
iðnÞ xn þ dnvn; n P 1;

ð1:4Þ

where n = (k(n) � 1)N + i(n), i(n) 2 {1, 2, . . ., N}, {an}, {bn},
{cn}, {dn}, are sequences of real numbers in [0,1] with an +
cn 6 1 and bn + dn 6 1 for all n P 1 and {un}, {vn}, are two

bounded sequences.
The development of random fixed point iterations was

initiated by Choudhury in [18] where random Ishikawa iteration

scheme was defined and its strong convergence to a random fixed
point in Hilbert spaces was discussed. After that, several authors
have worked on random fixed point iterations some of which are

noted in ([19–24]) and many others. Banerjee et al. [25]
constructedacomposite implicit random iterativeprocesswither-
rors for a finite family {Ti: i 2 I= {1, 2, . . .,N}} ofN continuous
asymptotically nonexpansive randomoperators fromX · C toC,

whereC benonempty closed convex subset of a separableBanach
space E. They discuss the necessary and sufficient conditions for
the convergence of this composite implicit random iterative pro-

cess defined in the compact form as follows:

nnðtÞ ¼ annn�1ðtÞ þ bnT
kðnÞ
iðnÞ ðt; gnðtÞÞ þ cnfnðtÞ;

gnðtÞ ¼ annnðtÞ þ bnT
kðnÞ
iðnÞ ðt; nnðtÞÞ þ cngnðtÞ; n P 1; 8t 2 X;

ð1:5Þ

where {an}, {bn}, {cn}, {an}, {bn}, {cn} are sequences of real

numbers in [0, 1] with an + bn + cn = an + bn + cn = 1 and
{fn(t)}, {gn(t)} are bounded sequences of measurable functions
from X to C.

Inspired and motivated by theses facts, we investigate con-
vergence of the following implicit random iterative process:

Definition 1.1. Let fTigNi¼1 and fSigNi¼1 be two finite families of
2N asymptotically nonexpansive random mappings form

X · C to C. where C is a nonempty closed convex subset of
a separable Banach space E. Let n0: X fi C be a measurable
function. Then, define the sequence {nn(w)} as

nnðwÞ ¼ ð1� an � cnÞnn�1ðwÞ þ anT
kðnÞ
iðnÞ ðw; gnðwÞÞ þ cnfnðwÞ;

gnðwÞ ¼ ð1� bn � dnÞnnðwÞ þ bnS
kðnÞ
iðnÞ ðw; nnðwÞÞ þ dngnðwÞ;

ð1:6Þ

where n = (k(n) � 1)N + i(n), i(n) 2 {1, 2, . . ., N}, {an}, {bn},

{cn}, {dn} are sequences of real numbers in [0,1] with an +
cn 6 1 and bn + dn 6 1 for all w 2 X and for all n P 1 and
{fn(w)}, {gn(w)} are bounded sequences of measurable func-

tions from X to C.

We extend the random iterative process (1.5) to the case of

two finite families of asymptotically nonexpansive random
mappings {Ti, Si: i= 1, 2, . . ., N} and also study the random
version of the implicit iterative process (1.4). We obtain the
weak and strong convergence of an implicit random iterative

process (1.6) in a uniformly convex Banach space.

2. Preliminaries

Let (X, R) be a measurable space, C a nonempty subset of E. A
mapping n: X fi C is called measurable if n�1(B \ C) 2 R for
every Borel subset B of a Banach space E. A mapping T:

X · C fi C is said to be random mapping if for each fixed
x 2 C, the mapping T(.,x): X fi C is measurable. A measurable
mapping n: X fi C is called a random fixed point of the random

mapping T: X · C fi C if T(w, n(w)) = n(w) for each w 2 X.
We denote the set of all random fixed points of random

mapping T by RF(T).

Definition 2.1 [26]. A Banach space E is said to satisfy the

Opial’s condition if for any sequence {xn} in E, xn N x weakly
as n fi1 and x „ y implying that

lim sup
n!1

kxn � xk < lim sup
n!1

kxn � yk;

for all y 2 E.

Definition 2.2. A map T: C fi E is called demiclosed at y 2 E if

for each sequence {xn} in C and each x 2 E, xn N x weakly and
Txn fi y strongly imply that x 2 C and Tx = y.

Definition 2.3 [25]. A finite family {Ti: i 2 I= {1, 2, 3, . . ., N}}

of N continuous random operators from X · C to E with
F ¼

TN
i¼1RFðTiÞ– ; is said to satisfy condition B on C if there

exists a nondecreasing function f: [0, 1) fi [0, 1) with

f(0) = 0, f(r) P 0 for all r 2 (0, 1) such that for all w 2 X,
fðdðnðwÞ;FÞÞ 6 max16i6NfknðwÞ � Tiðw; nðwÞÞkg for all n(w),
where n: X fi C is a measurable function and
dðnðwÞ;FÞ ¼ inffknðwÞ � qðwÞk : qðwÞ 2 F ¼

TN
i¼1RFðTiÞg.

Definition 2.4 [19]. Let C be a nonempty closed convex subset
of a separable Banach space E and T: X · C fi E be a random
mapping. Then, T is said to be

(1) Nonexpansive random operator if for arbitrary x, y 2 C,

kTðw; xÞ � Tðw; yÞk 6 kx� yk; 8w 2 X:

(2) Asymptotically nonexpansive random mapping if there
exists a measurable mapping sequence rn(w): X fi [1,

1) with limnfi1rn(w) = 1 for each w 2 X such that for
arbitrary x, y 2 C and for each w 2 X

kTnðw; xÞ � Tnðw; yÞk 6 rnðwÞkx� yk; n ¼ 1; 2; . . .

(3) UniformlyL-Lipschitzian randommapping if there exists a
constant L> 0 such that for arbitrary x, y 2 C and w 2 X
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