

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

ORIGINAL ARTICLE

On some first-order differential subordination

M. Nunokawa a, E. Yavuz Duman b, J. Sokół c,*, N.E. Cho d, S. Owa e

- ^a University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba 260-0808, Japan
- ^b Department of Mathematics and Computer Science, İstanbul Kültür University, İstanbul, Turkey
- ^c Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
- d Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Pusan 608-737, Republic of Korea
- ^e Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

Received 2 July 2013; accepted 29 July 2013 Available online 15 September 2013

KEYWORDS

Close-to-convex functions; Convex functions; Starlike functions; Subordination **Abstract** Let \mathcal{A} denote the class of functions f that are analytic in the unit disc \mathbb{D} and normalized by f(0) = f'(0) - 1 = 0. In this paper, we investigate the class of functions such that $\Re\{f'(z) + zf''(z) - \beta\} > \alpha$ in \mathbb{D} . We determine conditions for α and β under which the function f is univalent, close-to-convex, and convex. To obtain this, we first estimate $|\operatorname{Arg}\{f'(z)\}|$ which improves the earlier results.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 30C45; 30C80

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.

1. Introduction

Let \mathcal{H} be the class of functions analytic in the unit disk $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$, and denote by \mathcal{A} the class of analytic functions in \mathbb{D} and usually normalized, i.e., $\mathcal{A}=\{f\in\mathcal{H}:f(0)=0,f'(0)=1\}$. We say that the $f\in\mathcal{H}$ is subordinate to $g\in\mathcal{H}$ in the unit disc \mathbb{D} , written $f\prec g$ if and only if there exists an analytic function $w\in\mathcal{H}$ such that $|w(z)|\leqslant |z|$ and

f(z) = g[w(z)] for $z \in \mathbb{D}$. Therefore, f < g in \mathbb{D} implies $f(\mathbb{D}) \subseteq g(\mathbb{D})$. In particular, if g is univalent in \mathbb{D} then the Subordination Principle says that f < g if and only if f(0) = g(0) and $f(|z| < r) \subseteq g(|z| < r)$, for all $r \in (0,1)$.

The class \mathcal{S}_{α}^{*} of starlike functions of order $\alpha < 1$ may be defined as

$$\mathcal{S}_{\boldsymbol{\alpha}}^* := \{ f \in \mathcal{A} : \Re \mathrm{e} \frac{z f'(z)}{f(z)} > \boldsymbol{\alpha}, \quad z \in \mathbb{D} \}.$$

The class \mathcal{S}_{α}^{*} and the class \mathcal{K}_{α} of convex functions of order $\alpha < 1$

$$\mathcal{K}_{\alpha} := \{ f \in \mathcal{A} : \Re e \left(1 + \frac{z f''(z)}{f'(z)} \right) > \alpha, z \in \mathbb{D} \}$$
$$= \{ f \in \mathbb{D} : z f' \in \mathcal{S}_{\alpha}^* \}$$

were introduced by Robertson in [11]. If $\alpha \in [0; 1)$, then a function in either of these sets is univalent. In particular, we denote $S_0^* = S^*, K_0 = K$, the classes of starlike and convex functions, respectively. Recall that $f \in A$ is said to be in the class $C_{\alpha}(\beta)$,

E-mail addresses: mamoru_nuno@doctor.nifty.jp (M. Nunokawa), e.yavuz@iku.edu.tr (E. Yavuz Duman), jsokol@prz.edu.pl (J. Sokół), necho@pknu.ac.kr (N.E. Cho), shige21@ican.zaq.ne.jp, owa@math.kindai.ac.jp (S. Owa).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

^{*} Corresponding author. Tel.: +48 178651605.

M. Nunokawa et al.

[3], of close-to-convex functions of order β and type α , $0 \le \beta < 1$, if and only if there exist $g \in \mathcal{K}_{\alpha}$, $\varphi \in \mathbb{R}$, such that

$$\Re \left\{ e^{i\varphi} \frac{f'(z)}{g'(z)} \right\} > \beta, \quad z \in \mathbb{D}. \tag{1.1}$$

Functions defined by (1.1) with $\varphi = 0$ were considered earlier by Ozaki [10], see also Umezawa [12,13]. Moreover, Lewandowski [5,6] defined the class of functions $f \in \mathcal{A}$ for which the complement of $f(\mathbb{D})$ with respect to the complex plane is a linearly accessible domain in the large sense. The Lewandowski's class is identical with the Kaplan's class $\mathcal{C}_0(0)$.

2. Main result

Theorem 2.1. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in the unit disc \mathbb{D} . If

$$f'(z) \neq 0, \ f'(z) + zf''(z) \neq 0, \quad z \in \mathbb{D}$$
 (2.1)

and

$$\Re e\{f'(z) + zf''(z)\} > \beta, \quad z \in \mathbb{D}, \tag{2.2}$$

then

$$|\operatorname{Arg}\{f'(z)\}| \le \begin{cases} \frac{\pi(1-\beta)}{2(1-2\beta)} \log\{2(1-\beta)\} & \beta \in (-\infty, 1/2) \cup (1/2, 1), \\ \frac{\pi}{2} - 1 & \beta = 1/2. \end{cases}$$
 (2.3)

Moreover, f is close-to-convex in \mathbb{D} whenever

 $\beta > \beta_0$

where $-1.47 < \beta_0 < -1.46$ is the positive solution of the equation

$$\log\{2(1-\beta)\} = \frac{1-2\beta}{1-\beta}.\tag{2.4}$$

Proof. Note that the assumptions (2.1) are necessary for $\beta < 0$ only. If $\beta \in [0,1)$, then from (2.2) we have even more $\Re\{f'(z) + zf''(z)\} > 0$. Moreover, from (2.2) we have also that $\Re\{(zf'(z))'\} > 0$ so zf' is univalent in \mathbb{D} and $f'(z) \neq 0$.

From the hypothesis (2.2), we have

$$\frac{f'(z)+f''(z)-\beta}{1-\beta} \prec \frac{1+z}{1-z}, \quad z \in \mathbb{D}$$

and so, it follows that

$$f'(z) + zf''(z) \prec (1 - \beta)\frac{1+z}{1-z} + \beta, \quad z \in \mathbb{D}.$$
 (2.5)

From (2.5), we have

$$|\operatorname{Arg}\{f'(\rho e^{i\theta}) + \rho e^{i\theta}f''(\rho e^{i\theta})\}|$$

$$\leq \sin^{-1}\left\{\frac{2(1-\beta)\rho}{1+(1-2\beta)\rho^2}\right\} \quad \text{for all} \quad \rho \in [0,1),$$

$$\theta \in (-\pi,\pi]. \tag{2.6}$$

On the other hand, it follows that

$$f'(z) = \frac{zf'(z)}{z}$$

$$= \frac{1}{z} \int_{0}^{z} (tf'(t))' dt$$

$$= \frac{1}{z} \int_{0}^{z} (f'(t) + tf''(t)) dt$$

$$= \frac{1}{re^{i\theta}} \int_{0}^{r} (f'(\rho e^{i\theta}) + \rho e^{i\theta} f''(\rho e^{i\theta})) e^{i\theta} d\rho$$

$$= \frac{1}{r} \int_{0}^{r} (f'(\rho e^{i\theta}) + \rho e^{i\theta} f''(\rho e^{i\theta})) d\rho,$$
(2.7)

where
$$z = \rho e^{i\theta}$$
, $\rho \in [0, 1)$, $\theta \in (-\pi, \pi]$. It is known that $\sin^{-1} x \le \frac{\pi}{2} x$ for $x \in [0, 1]$. (2.8)

Then, applying the same idea of [9, pp. 1292–1293], Theorem 2.2, applying also (2.5), (2.7) and (2.8), we have

$$\begin{split} |\mathrm{Arg}\{f'(z)\}| &= \left|\mathrm{Arg}\left\{\frac{1}{r} \int_{0}^{r} (f'(\rho e^{i\theta}) + \rho e^{i\theta} f''(\rho e^{i\theta})) \mathrm{d}\rho,\right\}\right| \\ &\leq \int_{0}^{r} |\mathrm{Arg}\{f'(\rho e^{i\theta}) + \rho e^{i\theta} f''(\rho e^{i\theta})\}| \mathrm{d}\rho, \\ &\leq \int_{0}^{r} \sin^{-1}\{\frac{2(1-\beta)\rho}{1+(1-2\beta)\rho^{2}}\} \mathrm{d}\rho \\ &\leq \left\{\frac{\pi}{2} \int_{0}^{r} \left\{\frac{2(1-\beta)\rho}{1+(1-2\beta)\rho^{2}}\right\} \mathrm{d}\rho \quad \beta \in (-\infty,1/2) \cup (1/2,1), \right. \\ &\int_{0}^{r} \sin^{-1}\rho \mathrm{d}\rho \qquad \beta = 1/2, \\ &= \left\{\frac{\pi(1-\beta)}{2(1-2\beta)} \int_{0}^{r} \left\{\frac{2(1-2\beta)\rho}{1+(1-2\beta)\rho^{2}}\right\} \mathrm{d}\rho \quad \beta \in (-\infty,1/2) \cup (1/2,1), \right. \\ &\int_{0}^{r} \sin^{-1}\rho \mathrm{d}\rho \qquad \beta = 1/2, \\ &= \left\{\frac{\pi(1-\beta)}{2(1-2\beta)} \left\{\log\{1+(1-2\beta)\rho^{2}\}\right\}\right|_{\rho=0}^{\rho=r} \quad \beta \in (-\infty,1/2) \cup (1/2,1), \\ &\left\{\rho \sin^{-1}\rho + \sqrt{1-\rho^{2}}\right\}\right|_{\rho=0}^{\rho=r} \quad \beta = 1/2, \\ &= \left\{\frac{\pi(1-\beta)}{2(1-2\beta)} \log\{1+(1-2\beta)r^{2}\}\right\} \quad \beta \in (-\infty,1/2) \cup (1/2,1), \\ &r \sin^{-1}r + \sqrt{1-r^{2}} - 1 \qquad \beta = 1/2. \end{split}$$

Letting $r \to 1^-$ we obtain

$$|\mathrm{Arg}\{f'(z)\}| \leqslant \begin{cases} \frac{\pi(1-\beta)}{2(1-2\beta)} \log\{2(1-\beta)\} & \beta \in (-\infty,1/2) \cup (1/2,1), \\ \frac{\pi}{2}-1 & \beta = 1/2. \end{cases}$$

It is easy to see that there exists β_0 , $-1.47 < \beta_0 < -1.46$, such that

$$\frac{\pi(1-\beta_0)}{2(1-2\beta_0)}\log\{2(1-\beta_0)\} = \frac{\pi}{2}$$

and so for $\beta > \beta_0$, we have

$$\Re e\{f'(z)\} > 0, \ z \in \mathbb{D}.$$

This means that f is a close-to-convex function with respect to g(z) = z, see (1.1). It completes the proof. \Box

Recall here the well known theorem due to Hallenbeck and Ruscheweyh [2].

Theorem A (see [2]). Let the function h be analytic and convex univalent in |z| < 1 with h(0) = a. Let also $p(z) = a + b_n z^n + b_{n+1} z^{n+1} + \cdots$ be analytic in \mathbb{D} If

$$p(z) + \frac{zp'(z)}{c} \prec h(z), \quad z \in \mathbb{D}$$

for $\Re\{c\} \ge 0, c \ne 0$, then

$$p(z) \prec q_n(z) \prec h(z), \quad z \in \mathbb{D},$$

where $q_n(z) = \frac{c}{nz^{c/n}} \int_0^z t^{c/n-1} h(t) dt$. Moreover, the function $q_n(z)$ is convex univalent and is the best dominant of $p < q_n$ in the sense that if p < q, then $q_n < q$.

The condition (2.2) becomes

$$f'(z) + zf''(z) \prec h_{\beta}(z) = (1 - \beta)\frac{1 - z}{1 + z} + \beta$$

where h_{β} is convex univalent and maps the unit disc onto the halfplane $\Re\{w\} > \beta$. Using the above theorem with n = 1, c = 1, we immediately get

Download English Version:

https://daneshyari.com/en/article/483859

Download Persian Version:

https://daneshyari.com/article/483859

<u>Daneshyari.com</u>