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Abstract The objective of this paper is to investigate the approximate boundary controllability of

Sobolev-type stochastic differential systems in Hilbert spaces. The control function for this system is

suitably constructed by using the infinite dimensional controllability operator. Sufficient conditions

for approximate boundary controllability of the proposed problem in Hilbert space is established by

using contraction mapping principle and stochastic analysis techniques. The obtained results are

extended to stochastic differential systems with Poisson jumps. Finally, an example is provided

which illustrates the main results.
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1. Introduction

In many cases, the accurate analysis, design, and assessment of
systems subjected to realistic environments must take into ac-
count the potential of random loads and randomness in the

system properties. Randomness is intrinsic to the mathemati-
cal formulation of many phenomena such as fluctuations in
the stock market, or noise in communication networks. To

build more realistic models in economics, social sciences,
chemistry, finance, physics and other areas, stochastic effects

need to be taken into account. Mathematical modeling of such
systems often leads to differential equations with random
parameters. The use of deterministic equations that ignore

the randomness of the parameter or replace them by their
mean values can result in gross errors. All such problems are
mathematically modeled and described by various stochastic
systems described by stochastic differential equations, stochas-

tic delay equations, and in some cases stochastic integro-differ-
ential equations which are mathematical models for
phenomena with irregular fluctuations. Stochastic differential

equations are important from the viewpoint of applications
since they incorporate (natural) randomness into the mathe-
matical description of phenomena, thereby describing it more

accurately. The theory of stochastic differential systems has be-
come an important area of investigation in the past two dec-
ades because of their applications to various problems
arising in communications, control technology, mechanics,
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electrical engineering, medicine, biology, aviation, spaceflight,

material, robot, bioengineering, etc. [1,2]. This is due to the
fact that most problems in a real life situation to which math-
ematical models are applicable are basically stochastic rather
than deterministic (see [3]).

Mathematical control theory is one of the important con-
cept in the study of steering the dynamical system from given
initial state to any other final state or to neighborhood of the

final state under some admissible control input. The controlla-
bility problem for an evolution equation is also consist of driv-
ing the solution of the system to a prescribed final target state

(exactly or in some approximate way) in a finite interval of
time (see [4] and references therein). Problems of this type
are common in science and engineering and, in particular, they

arise often in the context of flow control, the control of flexible
structures appearing in flexible robots and large space struc-
tures, quantum chemistry, etc. (see [5]). From the mathemati-
cal point of view, the problems of exact and approximate

controllability are to be distinguished. It is obvious that exact
controllability is an essentially stronger notion than approxi-
mate controllability. Exact controllability always implies

approximate controllability. The converse statement is gener-
ally false. However, it should be addressed that in the case
of finite dimensional systems, the notions of exact and approx-

imate controllability coincide. Controllability results for a class
of fractional-order neutral evolution systems was discussed in
[6]. Sakthivel et al, [7] investigated the problem of approximate
controllability for a class of nonlinear impulsive differential

equations with state-dependent delay by using semigroup the-
ory and fixed point technique. In recent years, controllability
problems for various types of deterministic and stochastic

dynamical system have been studied in different directions
(see [8–13] and references therein). In the literature, there are
different definitions of controllability for SDEs, both for linear

and nonlinear dynamical systems [8,9,14]. In particular, Klam-
ka [15] derived the stochastic controllability of linear systems
with delay in control. Muthukumar et al. [16] proved the

approximate controllability of nonlinear stochastic evolution
systems with time varying delays with preassigned responses.
Sakthivel et al. [17] investigated the approximate controllabil-
ity of second order stochastic differential equations with

impulsive effects by using the Holders inequality, stochastic
analysis, and fixed point strategy. Shen et al. [18] proved
approximate controllability of abstract stochastic impulsive

systems with multiple time-varying delays by using the natural
assumptions that the corresponding linear system is approxi-
mately controllable. Sakthivel et al. [19,20] studied approxi-

mate controllability of fractional stochastic system by using
fixed point theorem with stochastic analysis theory.

Especially in the past two decades, applications resulting

from technological developments gave rise to the study of infi-
nite dimensional linear systems governed by partial differential
equations. In engineering, these systems are referred to as dis-
tributed parameter systems. Systems of this type appear for in-

stance in steel making plants, where the heat distribution on a
metal slab has to be governed, in biology, where the size of a
bacteria population has to be controlled or in electrical engi-

neering, where optimal operation of power plants has to be
calculated (see [2]). These examples fit into a class of systems
where control cannot be exceeded everywhere. It is for instance

only possible to heat the metal slab at the boundary, to control
the population size at a certain age or to generate current in the

power plants of an electrical network. Several abstract settings

have been developed to describe the distributed control sys-
tems on a domain in which the control is acted through the
boundary. But in these approaches one can encounter the dif-
ficulty for the existence of sufficiently regular solution to state

space system, the control must be taken in a space of suffi-
ciently smooth functions.

A semigroup approach to boundary input problems for lin-

ear differential equations was first presented by Fattorini [21].
This approach was extended by Balakrishnan [22] where he
showed that the solution of a parabolic boundary control

equation with L2 controls can be expressed as a mild solution
to an operator equation. Barbu [23] investigated a class of
boundary distributed linear control systems in Banach spaces.

MacCamy et al. [24] obtained the approximate boundary con-
trollability for the heat equations. Han et al. [25] also studied
the boundary controllability of differential equations with
nonlocal condition by using Banach fixed point theorem.

Many authors studied the boundary controllability of differen-
tial equations in deterministic cases (see [26–30] and references
therein). Balachandran et al. [31] established the sufficient con-

ditions for the boundary controllability of various types of
nonlinear Sobolev-type systems including integro differential
systems in Banach spaces. A Sobolev-type equation appears

in a variety of physical problems such as flow of fluids through
fissured rocks, thermodynamics, and propagation of long
waves of small amplitude (see [32,33]). Wang [34] addressed
the approximate boundary controllability results for semilin-

ear delay differential equations by using the corresponding lin-
ear system which is approximately boundary controllable. Li et
al. [35] showed that the boundary controllability of nonlinear

stochastic differential inclusions by using a fixed point theorem
for condensing maps due to Leray-Schauder nonlinear alterna-
tive theorem. If the semigroup is compact, then assumptions

(H2) in [35] is valid if and only if the state space is finite dimen-
sional. As a result, the applications are restricted to stochastic
ordinary differential control systems. Motivated by [31,34,35],

the aim of the proposed work is to obtain the approximate
boundary controllability of the following Sobolev-type sto-
chastic differential systems without using the hypothesis (H2)
in [35]

dðFxðtÞÞ¼ ðqxðtÞþ fðt;xðc1ðtÞÞ;xðc2ðtÞÞ; . . . ;xðcnðtÞÞÞÞdt
þgðt;xðc1ðtÞÞ;xðc2ðtÞÞ; . . . ;xðcnðtÞÞÞdWðtÞ; t2 J¼ ½0;b�;
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xð0Þ¼ x0;
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where the state variable x(Æ) takes values in a Hilbert space H
with an inner product ÆÆ, Ææ and i Æ i and the control function
u(Æ), takes values in Hilbert space U. B1:U fi H is a linear con-

tinuous operator. Let C :¼ CðJ;L2ðX;HÞÞ be the space of all
real valued measurable continuous functions from J into H.
Let q : DðqÞ# C ! RðqÞ#H is a closed, densely defined linear

operator, where D(q) is the domain of q and R(q) is the range
of q and s : DðsÞ# C ! RðsÞ#H is a linear operator with s be
a partial differential operator acting on the boundary ofH. Let

K be a another separable Hilbert space. Suppose {W(t)}tP0 is a
given K- valued Brownian motion or Wiener process with a fi-
nite trace nuclear covariance operator Q P 0. We are also
employing the same notation iÆi for the norm of L(K,H), where

L(K,H) denotes the space of all bounded operators from K
into H, simply L(H) if K= H. Let F : DðFÞ � C !
RðFÞ � H be a linear operator, the nonlinear function f be a
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