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Abstract A numerical method is developed to solve the nonlinear Boussinesq equation using the

quintic B-spline collocation method. Applying the Von Neumann stability analysis, the proposed

method is shown to be unconditionally stable. An example has been considered to illustrate the effi-

ciency of the method developed.
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1. Introduction

The nonlinear Boussinesq equation, which belongs to the KdV
family of equations, describes shallow water waves propagat-
ing in both directions, is given by

@2u

@t2
¼ @

2gðuÞ
@x2

þ q
@4u

@x4
; x 2 ½a; b�; t > t0: ð1:1Þ

where u= u(x, t), g(u) = u(1 + u) and ŒqŒ = 1 is a real

parameter. Taking q= �1 gives the good Boussinesq or
well-posed equation (GB), while taking q = 1 gives the bad
Boussinesq or ill-posed equation (BB).

The initial displacement associated with Eq. (1.1) is given
by

uðx; t0Þ ¼ fðxÞ

with initial velocity,

utðx; t0Þ ¼ f1ðxÞ ð1:2Þ

Wazwaz [1] developed modified decomposition method for
construction of soliton solutions and periodic solutions of
the Boussinesq equation. Bratsos [2] presented the method of

lines for the numerical solution of the Boussinesq equation.
Bratsos [3] derived a parametric scheme for the numerical solu-
tion of the Boussinesq equation. Choo [4] proposed pseudo-

spectral method for the damped Boussinesq equation.
Daripa and Hua [5] have used filtering and regularization tech-
niques, for the numerical study of an ill-posed Boussinesq
equation arising in water waves and nonlinear lattices. Ismail

and Bratsos [6] presented a predictor-corrector scheme for
the numerical solution of the Boussinesq equation. Tzirtzilakis
et al. [7] proposed spectral methods for the numerical solution

of the Boussinesq equation. Al-Khaled and Nusier [8] have
used Adomians decomposition method and the Galerkin inter-
polation methods based on Sinc functions to derive the numer-

ical solution of the Boussinesq equation. Mohyud-Din et al. [9]
developed the numerical solution of two-dimensional Bous-
sinesq equation using Adomian Decomposition and He’s
Homotopy Perturbation Method.
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The paper is organized into six sections. A finite difference
approximation technique is used to discretize the Eq. (1.1) in
time derivatives is discussed in Section 2. Quintic B-spline col-

location method to solve the Boussinesq equation is discussed
in Section 3. Section 4 presents the way to obtain the initial
state which is required to start our scheme. Stability analysis

of the proposed method is discussed in Section 5. Numerical
results are presented in Section 6.

2. Temporal discretization

Consider the following Boussinesq equation

@2u

@t2
¼ @2u

@x2
þ @

2u2

@x2
þ q

@4u

@x4
ð2:3Þ

with boundary conditions

uða; tÞ ¼ 0;

uðb; tÞ ¼ 0;

uxxða; tÞ ¼ 0;

uxxðb; tÞ ¼ 0

ð2:4Þ

The exact solution of the problem can be written as [10]

uðx; tÞ ¼ q sech2
ffiffiffiffi
A

6

r
ðx� ctþ x0Þ

" #
þ b� q

2

� �" #

where, A is the amplitude of the pulse, b is an arbitrary param-
eter, x0 is the initial position of the pulse, and
c ¼ � 2qðbþ A

3
Þ

� �1=2
is the velocity.

Consider a uniformmesh Dwith the grid points kij to discret-
ize the regionX = [a,b] · [0,T]. Each kij is the vertices of the grid
point (xi, tj) where xi = a+ ih, i = 0, 1, 2, . . . , N and tj = jk,
j= 0, 1, 2, . . . ,M, Mk = T. The quantities h and k are the

mesh size in the space and time directions, respectively.
Approximate the time derivative by usual finite difference

formula as

@2un

@t2
¼ unþ1 � 2un þ un�1

k2
þOðk2Þ ð2:5Þ

Substituting the above approximation into equation Eq. (2.3)
and discretizing in time variable, the equation becomes

unþ1 � 2un þ un�1

k2
¼ @

2un

@x2
þ @

2ðu2Þn

@x2
þ q

@4un

@x4
ð2:6Þ

Apply h-weighted scheme to space derivatives to Eq. (2.6),

where, (0 6 h 6 1), it can be written as

unþ1 � 2un þ un�1

k2
¼ h

@2unþ1

@x2
þ @

2ðu2Þnþ1

@x2
þ q

@4unþ1

@x4

 !
þ ð1

� hÞ @2un

@x2
þ @

2ðu2Þn

@x2
þ q

@4un

@x4

� �

where the superscripts n � 1, n, n + 1 denote the adjacent time
levels. Taking h to be 1

2
, the above equation becomes

unþ1 � 2un þ un�1

k2
¼

unþ1xx þ unxx
	 


2
þ q

unþ1xxxx þ unxxxx
	 


2

þ
u2xx
	 
nþ1 þ u2xx

	 
n
2

ð2:7Þ

The nonlinear term in Eq. (2.7) can be linearized using Taylor
expansion as

u2xx
	 
nþ1 ¼ 2unxxu

nþ1
xx � u2xx

	 
n ð2:8Þ

Substituting Eq. (2.8) into Eq. (2.7), Eq. (2.7) leads to

2unþ1 � k2unþ1xx � k2qunþ1xxxx � 2k2unxxu
nþ1
xx ¼ 4un � 2un�1 þ k2unxx

þ k2qunxxxx ð2:9Þ

The space derivatives are approximated by quintic B-spline,

which is presented in the next section.

3. Quintic B-spline collocation method

The interval [a,b] of domain has been subdivided as

a ¼ x0 < x1 < x2 < � � � < xN ¼ b

To provide the support for the quintic B-spline near the end
boundaries, ten additional knots have been introduced as

x�5 < x�4 < x�3 < x�2 < x�1 < x0

and

xN < xNþ1 < xNþ2 < xNþ3 < xNþ4 < xNþ5:

The basis functions Bj(x), j= �2, . . . , N + 2 of quintic

B-spline are defined as

BjðxÞ¼
1

h5

ðx�xjþ3hÞ5; x2 ½xj�3;xj�2�;

ðx�xjþ3hÞ5�6ðx�xjþ2hÞ5; x2 ½xj�2;xj�1�;

ðx�xjþ3hÞ5�6ðx�xjþ2hÞ5þ15ðx�xjþhÞ5; x2 ½xj�1;xj�;

ð�xþxjþ3hÞ5�6ð�xþxjþ2hÞ5þ15ð�xþxjþhÞ5; x2 ½xj;xjþ1�;

ð�xþxjþ3hÞ5�6ð�xþxjþ2hÞ5; x2 ½xjþ1;xjþ2�;

ð�xþxjþ3hÞ5; x2 ½xjþ2;xjþ3�;
0 otherwise

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

The values of successive derivatives B
ðrÞ
j ðxÞ; j ¼ �2; . . . ;Nþ 2;

r ¼ 0; 1; 2; 3; 4 at nodes are listed in Table 1. For solving Eq.
(2.9) using the collocation method with quintic B-spline, an

approximate solution U(x, t) to the exact solution of the prob-
lem is to be found. Let U(x, t) can be written in the following
form

Uðx; tÞ ¼
XNþ2
j¼�2

cjðtÞBjðxÞ ð3:10Þ

where cj are unknown real coefficients and Bj(x) are quintic B-
spline functions.

Substituting Eq. (3.10) into Eq. (2.9) yields the following
equation

2
XNþ2
j¼�2

cnþ1j ðtÞBjðxiÞ � k2
XNþ2
j¼�2

cnþ1j ðtÞB00j ðxiÞ � k2q
XNþ2
j¼�2

cnþ1j ðtÞB
ð4Þ
j ðxiÞ

� 2k2
XNþ2
j¼�2

cnj ðtÞB00j ðxiÞ
XNþ2
j¼�2

cnþ1j ðtÞB00j ðxiÞ

¼ 4
XNþ2
j¼�2

cnj ðtÞBjðxiÞ � 2
XNþ2
j¼�2

cn�1j ðtÞBjðxiÞ þ k2
XNþ2
j¼�2

cnj ðtÞB00j ðxiÞ

þ k2q
XNþ2
j¼�2

cnj ðtÞB
ð4Þ
j ðxiÞ

Simplifying, the above relation leads to the following system
of (N + 1) equations in (N+ 5) unknowns cnþ1�2 ; c

nþ1
�1 ;

	
cnþ10 ; cnþ11 ; . . . ; cnþ1N ; cnþ1Nþ1; c

nþ1
Nþ2Þ
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