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On MHD flow of an incompressible viscous fluid
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Abstract In this paper, we apply Homotopy Perturbation Method (HPM) to find the analytical

solutions of nonlinear MHD flow of an incompressible viscous fluid through convergent or diver-

gent channels in presence of a high magnetic field. The flow of an incompressible electrically con-

ducting viscous fluid in convergent or divergent channels under the influence of an externally

applied homogeneous magnetic field is studied both analytically and numerically. The graphs are

presented to reveal the physical characteristics of flow by changing angles of the channel, Hartmann

and Reynolds numbers.
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1. Introduction

The incompressible viscous fluid flow through convergent or
divergent channels is one of the most applicable cases in many
applications such as aerospace, chemical, civil, environmental,

mechanical, and biomechanical engineering as well as in
understanding rivers and canals. Jeffery [1] and Hamel [2] have
carried out the mathematical formulations of this problem in

1915 and 1916, respectively. If we simplify Navier–Stokes
equations in the particular case of two-dimensional flow
through a channel with inclined walls, finally we can reach
Jeffery–Hamel problem [3–6]. Jeffery–Hamel flows have been

extensively studied by several authors and discussed in many
textbooks, for example [7–11], and so forth. The study of elec-

trically conducting viscous fluid that flows through convergent

or divergent channels under the influence of an external mag-
netic field not only is fascinating theoretically but also finds
applications in mathematical modeling of several industrial
and biological systems. A possible practical application of

the theory we envisage is in the field of industrial metal casting,
the control of molten metal flows. Another area in which the
theoretical study may be of interest is in the motion of liquid

metals or alloys in the cooling systems of advanced nuclear
reactors [12]. Clearly, the motion in the region with intersect-
ing walls may represent a local transition between two parallel

channels with different cross-sections, a widening or a contrac-
tion of the flow. The first recorded use of the word magnetohy-
drodynamics (MHD) is by Bansal [13]. The theory of MHD is

inducing current in a moving conductive fluid in the presence
of magnetic field which creates force on electrons of the con-
ductive fluid and also changes the magnetic field itself. A sur-
vey of magnetohydrodynamics studies in the mentioned

technological field can be found in [14]. The problem is basi-
cally an extension of classical Jeffery–Hamel flows of ordinary
fluid mechanics to MHD. In the MHD solution an external

magnetic field acts as a control parameter for both convergent
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and divergent channel flows. Here, besides the flow Reynolds
number and the channel angular widths, at least an additional

dimensionless parameter appears, namely, the Hartman num-
ber. Hence, a much larger variety of solutions than in the clas-
sical problem are expected. The inspiration of this paper is the

extension of a relatively new technique which is called Homot-
opy Perturbation Method [15–17] to investigate the MHD flow
through convergent or divergent channels in presence of a high

magnetic field. The governing highly nonlinear equation of this
problem is also solved numerically by shooting method, cou-
pled with fourth-order Runge–Kutta scheme.

2. Mathematical formulation

Consider a system of cylindrical polar coordinates (r, h, z),
where the steady two-dimensional flow of an incompressible

conducting viscous fluid from a source or sink at channel walls
lie in planes and intersect in z-axis. The schematic diagram of
problem is illustrated in [18]. Now we assumed that uh = 0; it

means that there are no changes with respect to z direction;
thus the motion is purely in radial direction and merely de-
pends on r and h and there is no magnetic field along z-axis.

The polar form of equation of continuity, Navier–Stokes and
Maxwell’s in reduce form is given as follows:
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where B0 is the electromagnetic induction strength, r the con-

ductivity of the fluid, u the velocity along radial direction, P
the fluid pressure, m the coefficient of kinematic viscosity,
and q the fluid density.

Now from Eq. (1), we have

fðhÞ ¼ ruðr; hÞ: ð4Þ

Using g ¼ h
a ; i.e., the dimensionless parameters, where a is

the semiangle between the inclined walls

fðgÞ ¼ fðhÞ
fmax

; ð5Þ

substituting Eq. (5) into Eq. (2) and Eq. (3), we have

f000ðgÞ þ 2aRefðgÞf0ðgÞ þ ð4�HÞa2f0ðgÞ ¼ 0; ð6Þ
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ffiffiffiffiffiffi
rB2

0

qv

q
is Hartmann number and Re is the Reynolds

number is

Re ¼ fmaxa
m

divergent� channel : a > 0; fmax > 0;

convergent� channel : a < 0; fmax < 0:

�

So we have the BCs

fð0Þ ¼ 1; f0ð0Þ ¼ 0; fð1Þ ¼ 0: ð7Þ

Table 1 Values of a for Re = 100 and a = �2.5�.

H 0 1000 2000 4000

a �1.117418863 �0.9644432630 �0.8367326331 �0.6392026162

Figure 1 HPM solution for velocity is convergent channel for

Re = 100 and a = �2.5�.

Table 2 Values of a for Re = 100 and a = 2.5�.

H 0 1000 2000 4000

a �3.512069452 �3.011764524 �2.583264460 �1.912965835

Figure 2 HPM solution for velocity is convergent channel for

Re = 100 and a = 2.5�.
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