Egyptian Mathematical Society
Journal of the Egyptian Mathematical Society

ORIGINAL ARTICLE

Two new forms of half-discrete Hilbert inequality

L.E. Azar *
Department of Mathematics, Al al-Bayt University, P.O. Box 130095, Mafraq, Jordan

Received 18 February 2013; revised 28 March 2013; accepted 29 June 2013
Available online 12 August 2013

KEYWORDS

Hilbert inequality;
Hölder inequality;
Hardy inequality

Abstract

In this paper, we introduce two new forms of the half-discrete Hilbert inequality. The first form is a sharper form of the half-discrete Hilbert inequality and is related to Hardy inequality. In the second one, we give a differential form of this inequality.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 47A07; 26D10; 26D15
© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.
Open access under CC BY-NC-ND license.
where $\lambda>0$ and the constant $B\left(\frac{\lambda}{p}, \frac{\lambda}{q}\right)$ (the Beta function) is the best possible. The following general inequality was given in [3]

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} K(x, y) f(x) g(y) d x d y & <k\left(p A_{2}\right)\left\{\int_{0}^{\infty} x^{p q A_{1}-1} f^{p}(x) d x\right\}^{\frac{1}{p}} \\
& \times\left\{\int_{0}^{\infty} y^{p q A_{2}-1} g^{q}(x) d x\right\}^{\frac{1}{q}}
\end{aligned}
$$

where $k\left(p A_{2}\right)=\int_{0}^{\infty} K(1, t) t^{-p A_{2}}$ is the best possible constant, $K(x, y) \geqslant 0$ is a homogeneous function of degree $-\lambda(\lambda>0)$, $A_{1} \in\left(\frac{1-\lambda}{q}, \frac{1}{q}\right), A_{2} \in\left(\frac{1-\lambda}{p}, \frac{1}{p}\right)$ and $p A_{2}+q A_{1}=2-\lambda$. In [4] the following two new forms of (1.1) were proved:

For $f, g>0, f, g \in L(0, \infty)$, define $F(x)=\int_{0}^{x} f(u) d u$ and $G(x)=\int_{0}^{x} g(u) d u$, then for $\lambda>0$

$$
\begin{align*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(x+y)^{\lambda}} d x d y \leqslant & \frac{\lambda^{2}}{p q} B\left(\frac{\lambda}{q}, \frac{\lambda}{p}\right)\left(\int_{0}^{\infty} x^{-\lambda-1} F^{p}(x) d x\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{\infty} y^{-\lambda-1} G^{q}(y) d y\right)^{\frac{1}{q}} \tag{1.3}
\end{align*}
$$

For $\lambda>n \max (p, q), n=0,1, \ldots$, and assuming that f, g satisfy the conditions of Lemma 2.1 (see Section 2.2), then:

[^0]
\[

$$
\begin{align*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(x+y)^{\lambda}} d x d y \leqslant & \frac{\Gamma\left(\frac{\lambda}{p}-n\right) \Gamma\left(\frac{\lambda}{q}-n\right)}{\Gamma(\lambda)} \\
& \times\left(\int_{0}^{\infty} x^{p(n+1)-\lambda-1}\left(f^{(n)}(x)\right)^{p} d x\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{\infty} y^{q(n+1)-\lambda-1}\left(g^{(n)}(y)\right)^{q} d y\right)^{\frac{1}{q}} \tag{1.4}
\end{align*}
$$
\]

where the constant factors in both (1.3) and (1.4) are the best possible.

Refinements of some Hilbert-type inequalities by virtue of various methods are obtained in [5-7]. A survey of some recent results concerning Hilbert and Hilbert-type inequalities can be found in [8].

In [9] Yang introduced the following half-discrete Hilbert's inequality

$$
\begin{align*}
\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{a_{n}}{(x+n)^{\lambda}} d x< & B\left(\lambda_{1}, \lambda_{2}\right)\left(\int_{0}^{\infty} x^{p\left(1-\lambda_{1}\right)-1} f^{p}(x) d x\right)^{\frac{1}{p}} \\
& \times\left(\sum_{n=1}^{\infty} n^{q\left(1-\lambda_{2}\right)-1} a_{n}^{q}\right)^{\frac{1}{q}} \tag{1.5}
\end{align*}
$$

here, $\lambda_{1}, \lambda_{2}>0, \lambda_{1}+\lambda_{2}=\lambda, 0<\lambda_{1}<1$, and the constant $B\left(\lambda_{1}, \lambda_{2}\right)$ is the best possible. In particular if we set $\lambda_{1}=\frac{\lambda}{p}, \lambda_{2}=\frac{\lambda}{q}$, we get from (1.5)

$$
\begin{align*}
\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{a_{n}}{(x+n)^{\lambda}} d x< & B\left(\frac{\lambda}{p}, \frac{\lambda}{q}\right)\left(\int_{0}^{\infty} x^{p-\lambda-1} f^{p}(x) d x\right)^{\frac{1}{p}} \\
& \times\left(\sum_{n=1}^{\infty} n^{q-\lambda-1} a_{n}^{q}\right)^{\frac{1}{q}} \tag{1.6}
\end{align*}
$$

For extensions and other half-discrete Hilbert's inequalities see for example $[10,11]$.

If $p>1, f(x)>0$, and $F(x)=\int_{0}^{x} f(t) d t$, then the famous Hardy inequality [1] is given as
$\int_{0}^{\infty}\left(\frac{F(x)}{x}\right)^{p} d x<\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(x) d x$
the constant $\left(\frac{p}{p-1}\right)^{p}$ is the best possible. A weighted form of (1.3) is given also by Hardy [1] as
$\int_{0}^{\infty} x^{a}\left(\frac{F(x)}{x}\right)^{p} d x<\left(\frac{p}{p-1-a}\right)^{p} \int_{0}^{\infty} x^{a} f^{p}(x) d x$,
where $a<p-1$ and the constant $\left(\frac{p}{p-1-a}\right)^{p}$ is the best possible. Inequality (1.7) was discovered by Hardy while he was trying to introduce a simple proof of Hilbert inequality. For more information about inequalities (1.7), (1.8) and their history and development, we refer the reader to the papers [12,13].

In this paper by estimating $\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{a_{n}}{(x+n)^{\lambda}} d x$, we introduce two new inequalities with a best constant factor, similar to (1.3) and (1.4), the first one contained in Theorem 3.1 gives a relation between Hardy inequality and half-discrete Hilbert inequality, the second inequality contained in Theorem 3.2 gives a differential form of half-discrete Hilbert inequality.

2. Preliminaries and Lemmas

Recall that the Gamma function $\Gamma(\theta)$ and the Beta function $B(\mu, v)$ are defined, respectively, by
$\Gamma(\theta)=\int_{0}^{\infty} t^{\theta-1} e^{-t} d t, \quad \theta>0$,
$B(\mu, v)=\int_{0}^{\infty} \frac{t^{\mu-1}}{(t+1)^{\mu+v}} d t, \quad \mu, v>0$.
By the definition of the Gamma function, the following equality holds
$\frac{1}{(x+y)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} t^{\lambda-1} e^{-(x+y) t} d t$.
We will need the following three Lemmas (Lemmas 2.1 and 2.2 are given in [4]):

Lemma 2.1. Let $r>1, \frac{1}{r}+\frac{1}{s}=1, \varphi>0, \varphi \in L(0, \infty), \Phi(x)=$ $\int_{0}^{x} \varphi(u) d u$, then for $t, \alpha>0$ we have
$\int_{0}^{\infty} e^{-t x} \varphi(x) d x \leqslant t^{\frac{1}{r}-\alpha} \Gamma(\alpha s+1)^{\frac{1}{s}}\left\{\int_{0}^{\infty} x^{-\alpha r} e^{-t x} \Phi^{r}(x) d x\right\}^{\frac{1}{r}}$.
Lemma 2.2. Let $r>1, \frac{1}{r}+\frac{1}{s}=1, \varphi>0$, the derivatives $\varphi^{\prime}, \varphi^{\prime \prime}$, $\ldots, \varphi^{(k)}$ exists and positive ${ }^{s}$ and $\varphi^{(k)} \in L(0, \infty)(k=0,1, \ldots)$ $\left(\varphi^{(0)}:=\varphi\right)$, moreover, suppose that $\varphi(0)=\varphi^{\prime}(0)=\cdots=\varphi$ ${ }^{(k-1)}(0)=0$, then for $t, \alpha>0$ we have

$$
\int_{0}^{\infty} e^{-t x} \varphi(x) d x \leqslant t^{-k-\frac{1}{s}-\alpha} \Gamma(\alpha s+1)^{\frac{1}{s}}\left\{\int_{0}^{\infty} x^{-\alpha r} e^{-t x}\left(\varphi^{(k)}(x)\right)^{r} d x\right\}^{\frac{1}{r}}
$$

Lemma 2.3. Let $r>1, \frac{1}{r}+\frac{1}{s}=1, a_{n}>0$, then for $t>0$ and $0 \leqslant \beta<\frac{1}{r}$ we have
$\sum_{n=1}^{\infty} e^{-n t} a_{n}<t^{\beta-\frac{1}{r}} \Gamma(1-\beta r)^{\frac{1}{r}}\left\{\sum_{n=1}^{\infty} n^{\beta s} e^{-n t} a_{n}^{s}\right\}^{\frac{1}{s}}$.
Proof. Using Hölder's inequality, we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} e^{-n t} a_{n} & =\sum_{n=1}^{\infty}\left\{n^{-\beta} e^{-\frac{n t}{r}}\right\}\left\{n^{\beta} e^{-\frac{n t}{s}} a_{n}\right\} \\
& <\left(\sum_{n=1}^{\infty} n^{-\beta r} e^{-n t}\right)^{\frac{1}{r}}\left(\sum_{n=1}^{\infty} n^{\beta s} e^{-n t} a_{n}^{s}\right)^{\frac{1}{s}} \\
& <\left(\int_{0}^{\infty} x^{-\beta r} e^{-t x} d x\right)^{\frac{1}{r}}\left(\sum_{n=1}^{\infty} n^{\beta s} e^{-n t} a_{n}^{s}\right)^{\frac{1}{s}} \\
& =t^{\beta-\frac{1}{r}} \Gamma(1-\beta r)^{\frac{1}{r}}\left\{\sum_{n=1}^{\infty} n^{\beta s} e^{-n t} a_{n}^{s}\right\}
\end{aligned}
$$

3. Main results

In this section, we introduce the main two results in this paper. Theorem 3.1 gives a new form of the half-discrete Hilbert inequality (1.6) which is related to the famous Hardy inequality. In Theorem 3.2, we introduce another new form of the half-discrete Hilbert inequality, namely a differential form which is an extension of (1.6). Both of the obtained inequalities are with a best constant factor.

https://daneshyari.com/en/article/483867

Download Persian Version:

https://daneshyari.com/article/483867

Daneshyari.com

[^0]: * Tel.: +962 799095626.

 E-mail address: azar1@aabu.edu.jo.
 Peer review under responsibility of Egyptian Mathematical Society.

