
Pattern-based model refactoring for

the introduction association relationship

Boulbaba Ben Ammar *, Mohamed Tahar Bhiri

Faculty of Sciences of Sfax, Sfax University, Tunisia

Received 9 October 2013; revised 12 March 2014; accepted 5 June 2014

Available online 16 April 2015

KEYWORDS

Model refactoring;

UML;

B;

CSP;

Association relationship

Abstract Refactoring is an important software development process involving the restructuring of

a model to improve its internal qualities without changing its external behavior. In this paper, we

propose a new approach of model refactoring based on the combined use of UML, B and CSP.

UML models are described by class diagrams, OCL constraints, and state machine diagrams.

We detail a refactoring pattern that allows for the introduction of an association relationship

between two existing classes. We illustrate our proposal by giving a case study involving the

SAAT (Software Architecture Analysis Tool) system.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Refactoring is a reorganization activity that aims to improve
the internal structure of an existing body of code while main-
taining its external behavior. This activity enhances the quality

characteristics of a software system, including extensibility
(during evolutionary maintenance), reusability, and efficiency.
Various approaches have been proposed in the literature on

the code refactoring technique. Fowler (1999) has, for instance,
offered a catalog of refactoring rules applicable to the
static part of a Java program, including ‘‘RenameClass’’,

‘‘ExtractClass’’, ‘‘MoveOperation’’, ‘‘MoveAttribute’’, and

‘‘RenameOperation’’.
More recently, the refactoring technique has also been

adopted by several Agile software development methods
(Shore and Warden, 2007) such as XP (Baumeister and

Weber, 2013) and Scrum (Schwaber and Sutherland, 2013).
In fact, they involve a Test-Driven Development (TDD) which
is quick cycle consisting of three phases: test, coding and

refactoring.
Refactoring tools are also available for most

object-oriented languages, including Java, Smalltalk, C++,

C#, Delphi and Eiffel, and for integrated development
environments, such as Eclipse, NetBeans, and Oracle
JDeveloper. These code refactoring rules have, however, often

been defined informally, with no relationship being established
between model quality and the rules. Several attempts have
recently been made to overcome this inadequacy, with special
focus on the application of the refactoring technique on

standard models, including UML (Mens et al., 2007).
In this paper, we provide a new approach of model refac-

toring based on the combined use of UML, B (Abrial, 1996),

* Corresponding author.

E-mail addresses: Boulbaba.Ben-Ammar@live.fr (B. Ben Ammar),

Tahar_Bhiri@yahoo.fr (M.T. Bhiri).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Journal of King Saud University – Computer and Information Sciences (2015) 27, 170–180

King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com

http://dx.doi.org/10.1016/j.jksuci.2014.06.012
1319-1578 ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.06.012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Boulbaba.Ben-Ammar@live.fr
mailto:Tahar_Bhiri@yahoo.fr
http://dx.doi.org/10.1016/j.jksuci.2014.06.012
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.06.012
http://creativecommons.org/licenses/by-nc-nd/4.0/


and CSP (Hoare, 2004). UML models are described by class
diagrams, OCL constraints, and state machine diagrams.
Specifically, we propose a catalog of refactoring patterns that

are described in the same framework and formalized into B
and CSP. These refactoring patterns cover the basic concepts
of the object-oriented approach: conceptual relationships

between classes (association and generalization/specialization),
polymorphism, redefinition, abstract and generic class, and
delegation.

The preservation of behavior after the application of refac-
toring is assigned to the tools associated to B (the prover of the
Atelier B (Engineering, 2009)) and CSP (the model-checker
FDR2 (Goldsmith, 2005)). In fact, several researchers have

defined systematic rules for the translation of UML into both
B (Idani et al., 2009) and CSP (Rasch and Wehrheim, 2003)
languages. Several studies have previously reported on the suc-

cessful application of the B method in the development of vari-
ous complex real-life applications, including the first driverless
metro in the city of Paris, METEOR project (Behm et al.,

1999). This method represents one of the few formal methods
that has robust commercially available support tools for the
entire development lifecycle, from specification down to code

generation. Although this method is highly recommended for
the verification of static properties such as safety, it is not used
for checking dynamic properties such as liveness. For this rea-
son, we have opted for the use of the CSP language.

The remaining parts of the paper will be structured as fol-
lows. Section 2 will provide an overview of related works on
the topic under investigation. Section 3 will define our pro-

posed approach. In Section 4, we will give a general description
of the refactoring pattern. In Section 5, we will detail the pat-
tern of association relationship introduction. Section 6 will be

devoted to illustrating our proposal through the use of the
SAAT system. Finally, the conclusion will summarize the
major findings and provide new perspectives on model refac-

toring research.

2. Related works

Table 1 summarizes the major features characterizing the
refactoring approaches so far proposed for the UML model

using a set of evaluation criteria that are commonly cited in
the literature. According to the MDE approach, refactoring
can be considered a transaction processing system (Mens and

Gorp, 2005) that introduces changes (without adding details)
to the structure of a model. Unlike refinement, which is consid-
ered as a vertical model transformation, refactoring is a hori-

zontal model transformation. In other words, the refactoring
process does not lead to a change in the level of abstraction:
the source model (before refactoring) and target model (after

refactoring) remain in the same level of abstraction.
In software-driven engineering models, refactoring tech-

niques are very limited (Allem and Mens, 2007). Several
researchers (Gorp et al., 2003, Mens, 2006, Mens et al.,

2007, Mens and Tourwe, 2004) indicate that taking the whole
model refactoring process into consideration remains one of
the challenging tasks. This process involves six major

activities:

1. Identify which parts of the model should be refactored.

2. Decide on which refactoring rules to be applied to which
areas.

3. Ensure that once applied refactoring would preserve model
behavior and consistency.

4. Automate the application of refactoring.

5. Assess the impact of refactoring on software quality criteria
(complexity, legibility, adaptability) or process (productiv-
ity, cost, effort).

6. Synchronize the refactored model and other artifacts, such
as source code, documentation, specifications and tests.

The work described in Markovic (2008) offers a catalog of
refactoring operations inspired by the list of operations pre-

viously described by Fowler (1999). The proposed operations
are applicable on class diagrams and expressed by a
QVT-based formalization of model transformation. The
impacts of a refactoring operation on OCL constraints and

object diagrams have also been described.
Other researchers (Gorp et al., 2003) proposed an extension

of the UML meta-model that allowed for a better specification

of two pre/postcontion operators in Refactoring: ‘‘Pull Up
Method’’ and ‘‘Extract Method’’. This extension also con-
ferred tools with other abilities: check pre/post-conditions,

Table 1 Summary of related works on the refactoring approaches for the UML model.

Approach of Markovic (2008) Mens (2006)

and Mens and

Gorp (2005)

van

Kempen

et al. (2005)

Mens et al.

(2007)

Marković

and Baar

(2008)

Sunyé

et al.

(2001)

Correa

and

Werner

(2007)

Consideration of class

diagram

Yes Partial No Yes Yes Yes No

Consideration of state

machine diagram

No No Yes Yes No Yes No

Consideration of OCL

constraints

Yes Yes No No Yes No Yes

Behavior preservation Transformation of

model formalized

into QVT

Meta-modeling UML to

CSP

process

UML to graphs Graph

grammars

Rewriting Rewriting

Tool Supporting QVT OCL query engine Supporting

CSP

Fujaba for the

graph

transformation

Formalism

based on graph

grammars

No No

Detection of

refactoring

No Design smells No Best suited

refactoring

No No OCL

smells

Pattern-based model refactoring for the introduction association relationship 171



Download	English	Version:

https://daneshyari.com/en/article/483885

Download	Persian	Version:

https://daneshyari.com/article/483885

Daneshyari.com

https://daneshyari.com/en/article/483885
https://daneshyari.com/article/483885
https://daneshyari.com/

