
ORIGINAL ARTICLE

Performance modeling and analysis of parallel Gaussian

elimination on multi-core computers

Fadi N. Sibai *

P&CSD Dept. Center, Saudi Aramco, Dhahran 31311, Saudi Arabia

Received 16 October 2012; revised 2 February 2013; accepted 12 March 2013
Available online 20 March 2013

KEYWORDS

Gaussian elimination;

Multi-core computing;

Performance modeling and

analysis

Abstract Gaussian elimination is used in many applications and in particular in the solution of

systems of linear equations. This paper presents mathematical performance models and analysis

of four parallel Gaussian Elimination methods (precisely the Original method and the new Meet

in the Middle –MiM– algorithms and their variants with SIMD vectorization) on multi-core sys-

tems. Analytical performance models of the four methods are formulated and presented followed

by evaluations of these models with modern multi-core systems’ operation latencies. Our results

reveal that the four methods generally exhibit good performance scaling with increasing matrix size

and number of cores. SIMD vectorization only makes a large difference in performance for low

number of cores. For a large matrix size (n P 16 K), the performance difference between the

MiM and Original methods falls from 16· with four cores to 4· with 16 K cores. The efficiencies

of all four methods are low with 1 K cores or more stressing a major problem of multi-core systems

where the network-on-chip and memory latencies are too high in relation to basic arithmetic oper-

ations. Thus Gaussian Elimination can greatly benefit from the resources of multi-core systems, but

higher performance gains can be achieved if multi-core systems can be designed with lower memory

operation, synchronization, and interconnect communication latencies, requirements of utmost

importance and challenge in the exascale computing age.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

The large majority of modern microprocessors integrate multi-
ple processing cores on the same package leading to great per-
formance/power ratio gains. Today both central processing

units (CPUs) and graphic processing units (GPUs) integrate

multiple processing cores.Multi-core processors implement var-
ious types of parallelism including instruction-level parallelism,
thread-level parallelism, and data-level parallelism. While the

trend toward increasing number of cores per processor is strong,
it is an interesting and important problem to identify the perfor-
mance weaknesses of multi-core processors in order to keep the
increasing number of cores per processor trend going and avoid

themulticore performance ‘‘wall.’’While real application profil-
ing and scalability measurement are accurate performance indi-
cators, they are time consuming in particular when exploring

application scalability over a very large number of cores.Amore
flexible and faster method is analytical performance modeling

* Tel.: +966 3 8808523; fax: +966 3 8758302.

E-mail address: fadi.sibai@aramco.com.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Journal of King Saud University – Computer and Information Sciences (2014) 26, 41–54

King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com

1319-1578 ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.

http://dx.doi.org/10.1016/j.jksuci.2013.03.002

mailto:fadi.sibai@aramco.com
http://dx.doi.org/10.1016/j.jksuci.2013.03.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.03.002


which captures the essence of the performance-impacting com-
ponents of the software application and underlying hardware
models, and provides sufficiently accurate answers in particular

with regard to trends andkey performance impactors. In this pa-
per, wemodel the performance of parallel Gaussian Elimination
(GE) onmodernmulti-core processors, and derive speedups ver-

sus increasing number of cores and derive learnings for future
multicore processor designs.

Gaussian elimination (Grama, 2003; Quinn, 1994) is an effi-

cient mathematical technique for solving a system of linear
equations. Given the matrix set A · X= B, where X is the var-
iable matrix and A and B are constant matrices, Gaussian
elimination (GE) solves for the elements of the X matrix.

Gaussian Elimination has also other uses for it is also used
in computing the inverse of a matrix. The algorithm is com-
posed of two steps. The first step combines rows eliminating

a variable in the process and reducing the linear equation by
one variable at a time. This reduction step is repeated until
the left side (A · X) is a triangular matrix. The second step is

a back substitution of the solved X variables into upper rows
until further X variables can be solved.

The algorithm generally works and is stable and can be made

more stable by performing partial pivoting. The pivot is the left-
most non-zeromatrix element in a matrix row available for reduc-
tion. When the pivot is zero (non-zero), exchanging the pivot row
with another row usually with the largest absolute value in the pi-

vot position may be required.When two rows are combined to re-
duce the equation by one variable, a multiplication of all elements
in the pivot row by a constant and then subtracting all elements in

the row by the ones in the other row are performed resulting in a
new reduced row.During back substitution, a number of divisions,
multiplications and subtractions are performed to eliminate solved

variables and solve for a new one.
Partial pivoting works as follows. First the diagonal ele-

ment in the pivot column with the largest absolute value is lo-

cated and is referred to as the Pivot. In the Pivot row which is
the row containing the pivot, every element is divided by the
pivot to get a new pivot row with a 1 in the pivot position.
The next step consists of replacing each 1 below the pivot by

a 0. This is achieved by subtracting a multiple of the pivot
row from each of the rows below it.

Because partial pivoting requires more steps and consumes

more time and because without partial pivoting Gaussian
Elimination is acceptably stable, we ignore partial pivoting
herein and accept to trade off performance for stability.

The numerical instability is proportional to the size of the L
and U matrices with known worst-case bounds. For the case
without pivoting, it is not possible to provide a priori bounds
for Yeung and Chan (1997) provide a probabilistic analysis of

the case without pivoting.
Sankar (2004) proved that it is unlikely that A has a large

growth factor under Gaussian elimination without pivoting.

His results improve upon the average-case analysis of Gauss-
ian elimination without pivoting presented by Yeung and
Chan (1997).

Xiaoye and Demmel (1998) proposed a number of tech-
niques in place of partial pivoting to stabilize sparse Gaussian
elimination. They propose to not pivot dynamically thereby

enabling static data structure optimization, graph manipula-
tion and load balancing while remaining numerically stable.
Stability is kept by a variety of techniques: pre-pivoting large
elements to the diagonal, iterative refinement, using extra pre-

cision when needed, and allowing low rank modifications with
corrections at the end.

Geraci (2008) also avoids partial pivoting and recently

achieved a performance of 3.2Gflops with a matrix size of
33500 on the Cell Broadband Engine.

Parallel solutions of numerical linear algebra problems are

discussed in Demmel (1993), Duff and Van der Vorst (1999).
While the Gaussian Elimination method yields an exact solu-
tion to the A · X= B problem, iterative techniques trade off

execution time for solution accuracy. Parallel iterative tech-
niques are discussed in Barrett (1994), Greenbaum (1997),
Saad (2003), Van der Vorst and Chan (1997). These techniques
start with initial conditions for the X vector and keep refining

the X solution with each iteration until the X vector converges
to a solution vector. The different selections of the initial val-
ues of the X vector result in a variety of preconditioning tech-

niques with various performance yields.
Further performance gains can be achieved when the matri-

ces are sparse with many zero elements. Sparse matrix compu-

tation techniques are discussed in Heath (1997), Gupta (1997),
Gupta et al. (1998), Demmel et al. (1999).

In this paper, we analyze the performance of Parallel

Gaussian Elimination and an improved version on multi-core
computers with increasing number of cores, and with and
without SIMD vectorization. Section 2 reviews relevant litera-
ture. Section 3 presents the multi-core processor model on

which the parallel GE algorithms are executed. Section 4 re-
views the parallel GE algorithm and presents a new improved
version: Meet in the Middle algorithm. Section 5 presents the

mathematical performance model of the parallel GE algo-
rithm. Section 6 presents the mathematical performance model
of the improved parallel GE algorithm version. Section 7 states

the assumptions made in this performance modeling study.
Section 8 presents the parallel GE algorithms’ performance re-
sults on the multicore processor model with 4–16 K cores, and

their analysis. The paper concludes in Section 9.

2. Related background

Various performance analysis tools and methods are available
(Prinslow, 2011). Profiling and scalability measurements of
real application performance lead to accurate results. Applica-

tion profiling can be achieved by tools such as Intel VTune,
AMD Code Analyst, or GNU gprof. However this requires
implementation of the application, and running it on various
machines with various configurations, such as processors with

various number of cores, a process which consumes long time
and extensive resources. More importantly, this approach can-
not be adopted in our study as we wish to analyze the applica-

tion scalability up to 16 K cores, and current hardware limits
our exploration to only about 10 cores. Benchmarks are also
very efficient in studying computer performance. However

they cannot be used in our study for the same reason as real
applications: lacking scalable hardware. Simulators can pro-
vide up to cycle accurate performance but they require a very

long time to develop and are a suitable approach when the sim-
ulator is intended to be used extensively. Analytic performance
modeling provides a quick and fairly accurate method for
identifying trends and the key performance impactors. It is

flexible and allows for very large of cores to be modeled, more
than currently available in the market. For these reasons we
employ analytic performance modeling in this study.

42 F.N. Sibai



Download English Version:

https://daneshyari.com/en/article/484023

Download Persian Version:

https://daneshyari.com/article/484023

Daneshyari.com

https://daneshyari.com/en/article/484023
https://daneshyari.com/article/484023
https://daneshyari.com

