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a b s t r a c t

Management decisions regarding maintenance protocols critically hinge on the underlying probability
distribution of the time between failures in most repairable systems. Replacement of the system with
a new one resets the system age to zero, whereas a repair does not alter the system age but may shift
the parameters of the failure-time distribution. Additionally, maintenance decisions lead to left-truncated
observations, and right-censored observations. Thus, the underlying stochastic process governing a
repairable system evolves based on the management decision taken.

This paper mathematically formalizes the notion of howmanagement actions impact the functioning
of a repairable system over time by developing a new stochastic process model for such systems. The
proposedmodel is illustrated using both simulated and real data. The proposedmodel compares favorably
to other models for well-known data on Boeing airplanes. The model is further illustrated and compared
to other models on failure time and maintenance data stemming from the South Texas Project nuclear
power plant.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many repairable processes have finite lifetimes that may re-
quire corrective maintenance (CM) during their lifetimes, such as
adjustment, restoration, or lubrication. The process owner could
instead opt for replacement with a new process, referred to as
preventive maintenance (PM); an example of this kind of repair
would be a complete overhaul of the system. An important ap-
plication, considered later in this article, is nuclear-power genera-
tion. A nuclear power plant is comprised of numerous systems that
fail at random times, thus requiring frequentmaintenance. At each
maintenance time,management decideswhether themaintenance
should be corrective or preventive, and this potentially influences
the length of time until the next system failure. Failures may have
significant implications for safety and operating costs, as well as
the ability to satisfy customer demand for electricity.

A widespread assumption in the reliability literature is that the
parameters of the failure-time intensity are unchanged after CM,

∗ Corresponding author.
E-mail addresses: Paul.Zantek@ammd.com (P.F. Zantek), hansont@stat.sc.edu

(T. Hanson), paul.damien@mccombs.utexas.edu (P. Damien).

commonly termed theminimal repair assumption orminimal repair
hypothesis. In order to test and, if necessary, relax the minimal
repair assumption, a new stochastic process is introduced inwhich
the failure intensity following a CM is allowed to be distinctly
different than that following a PM; the failure intensity can
reflect repairs that improve reliability or make it worse. Relevant
properties of this stochastic process are characterized, and a two-
stage procedure is proposed for maximum likelihood estimation
of its parameters. As a byproduct of the maximum likelihood
estimation, Wald confidence intervals for the parameters of the
failure-time distribution are constructed. In addition, a likelihood
ratio test (LRT) of the minimal repair hypothesis is developed.

A crucial, practical feature in any repairable system is the pres-
ence of right censored failure times. Our stochastic process model
allows for such events, namely when maintenance is performed
prior to a failure occurring, common inmaintenance schedules. The
properties of our methods, including coverage probabilities of the
Wald confidence intervals and the sensitivity of the LRT, are stud-
ied using simulation.

To exemplify the methodological advances, we analyze two
datasets: (a) a classic repairable systems dataset on Boeing air
conditioners, and (b) themaintenance history and failure times for
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a water chilling system in the South Texas Project Nuclear Power
Plant.

The stochastic process model considered in this article is
related tomodels of repairable systems in the reliability literature;
for comprehensive reviews of this literature, see [1,2], and [3].
Renewal processes are commonly used if all the maintenance
repairs are PM, bringing the system to a ‘‘good-as-new’’ state each
time (known as perfect repair). This assumption simply restarts a
common failure intensity to its value at zero after every repair.
Note then that the term good-as-new is misleading in the presence
of decreasing intensity (and inter-failure hazard), as systems that
have not been repaired recently are actually more reliable than
those that have; this phenomenon is seen in the power plant data
in Section 5.

Non-homogeneous Poisson processes (NHPP) are used if all
repairs are CM, i.e. bring the system to a ‘‘good-as-old’’ state
(knownasminimal repair), leaving the failure intensity unchanged;
this can happen, for example, by replacing a failed sub-component
of a system. The NHPP is formally nested in the model proposed
in Section 2. Although common, the basic assumption of a
consistently ‘‘minimal’’ CM repair is questionable; usually several
types of maintenance, with varying degrees of effectiveness, are
undertaken throughout the lifetime of the system. For a recent
example assuming minimal repair, see [4].

Brown and Proschan [5] assume that repairs are either good-as-
new (PM) or bad-as-old (minimal repair) with probabilities p and
1− p, respectively. Block, Borges and Savits [6] allow these proba-
bilities p(t) to vary with system age; Whitaker and Samaniego [7]
assume the type of maintenance is known. Doyen [8] presents a
nonparametric estimation approach to thismodel for unknownbut
fixed p alongwith a review of recent literature on imperfect repairs
and maintenance scheduling. Presnell, Hollander and Sethura-
man [9] develop a test for the minimal repair assumption in a par-
ticular model that Block, Borges and Savits [6] proposed; however,
if minimal repair is rejected, the question remains as to whether
CM makes the system better or worse than in the case of minimal
repair. Inmany applications this distinction is crucial. If one ignores
maintenance decisions, Cooper, de Mello and Kleywegt [10] point
out that decisions based on the incorrect assumption of sufficient
minimal repairs could lead to a ‘‘spiral down’’ effect, where system
reliability gets worse after repair cycles, i.e., more failures than ex-
pected; this happens because the assumedminimal repairs are ac-
tuallyworse than ‘good-as-old’. Themodel we propose in Section 2
allows for a follow-up analysis of whether CM makes system reli-
ability better or worse than it was right before failure.

Kijima [11] proposed a model that includes perfect, minimal,
and in-between repairs by introducing the effective age of the sys-
tem after each repair, essentially providing a quantitative mea-
sure of whether the repair was successful. A particular case of
Kijima’s model allowing imperfect repair is considered by Mettas
and Zhao [12], who proposed a method to find the maximum like-
lihood estimates of the model’s parameters. Following Kijima [11],
Dorado, Hollander, and Sethuraman [13] allow for repairs of vary-
ing degree by including so-called known life supplements, num-
bers between zero and one indicating the degree of repair between
perfect and minimal. Veber, Nagode and Fajdiga [14] assume one
overall life supplement that is unknown, i.e. each repair reduces
the effective age of the system by the same fraction q. As an ex-
tension to a common q, Pan and Rigdon [15] allow the repair ef-
fectiveness parameter to vary from system to system. Gasmi [16]
considers the Weibull distribution in an alternating imperfect re-
pair scheme, i.e. PM followed by CM repeatedly, with common life
supplement q. Recently Li and Hanson [17] propose to regress the
life-supplement of each repair on covariates such as repair type,
materials used, et cetera using a Bayesian nonparametric model.
Tanwar, Rai, and Bolia [18] review much of the related literature
on Kijima-type models.

Our model joins a growing body of literature allowing for
differing types of departure from minimal repair, including
Kijima [11]. Doyen and Gaudoin [19] consider several classes of
imperfect repairmodels for increasing failure intensities, including
models where (a) failure intensity is reduced by a constant factor
relative to the current intensity; (b) failure intensity is reduced by
a constant factor, but only relative to the most recent repair; and
(c) several models based on the virtual age of the system, akin to
Kijima’s [11] models.

We note that the present article does not provide a method
to determine which of CM or PM is optimal for a system at
a given point in time. Such decisions critically depend on the
context; for instance, maintenance decisions in the context of a
nuclear power plant process versus a medical billing records pro-
cess would be substantially different. Second, the mathematical
framework needed to handle such context-specific decisions re-
quires stochastic optimization routines that are outside the scope
of the intended aims of this research. However, such routines re-
quire information about the underlying probability distribution of
the time until failure following each of PMor CM. That is, a decision-
maker must have sound knowledge of how the system’s reliability
is affected by maintenance decisions at any given point in time.
Dimitrov, Chukova, and Khalil [20] consider the related problem of
maintenance costs with imperfect repair, namely warrantee costs
within a Kijima Type I model. Garg, Rani, and Sharma [21,22] con-
sider maintenance scheduling for a paper mill assuming a Weibull
distribution. Doyen [8] also reviews recent literature on imperfect
repair and maintenance scheduling.

2. Methodology

The aim of Section 2.1 is to develop a newmathematical frame-
work that encapsulates the impact of management’s maintenance
decisions on the parameters of the failure-time distribution of re-
pairable systems. In Section 2.2, the failure-time distribution is
modeled as a Weibull since, in addition to its wide-spread use in
reliability applications, it has desirable theoretical and practical
properties that will be highlighted.

2.1. A general decision-dependent stochastic process model for
repairable systems

Consider a system that is put into operation at time t0 = 0. The
time until this system fails has probability density function (pdf)
f (y|θ), where θ is a vector of parameters indexing the density from
a class such as theWeibull family of distributions. At any time, the
system’s owner is allowed to perform maintenance of one of two
types. In the first type, the system’s components are replaced or
some other major restoration is performed such that the system’s
age is reset to zero. This is preventivemaintenance (PM). The second
type of maintenance involves partial repairs or upgrades that do
not (necessarily) restore the process to an ‘‘as good as new’’ state.
This is corrective maintenance (CM).

There exists a set of increasing times {t1, . . . , tn|ti < ti+1∀i =

0, 1, . . . , n−1}where, at each time, a decision is made to perform
either a PM or a CM. The time series of decisions is denoted {di}ni=0,
where di = 0 if a PM is performed at time ti and di = 1 if a CM is
performed; for example, d0 = 0 because we start with a newly
restored system. In addition, the time of the most recent PM is
denoted t∗i = max{tj|j < i, dj = 0}; for example, t∗1 = 0 always
because d0 = 0. A PM decision at time ti−1, i.e., di−1 = 0, resets the
age of the system to zero. The length of time until the next failure
(at time ti) then has pdf f (ti − t∗i |θ) = f (ti − ti−1|θ), where θ is
the parameter vector indexing the density associated with a newly
restored system.
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