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a b s t r a c t

Important features to be included in queueing-theoretic models of the call center operation are multiple
servers, impatient customers, time-varying arrival process, and operator’s after-call work (ACW). We
propose a fluid approximation technique for the queueing model with these features by extending the
analysis of a similar model without ACW recently developed by Liu andWhitt (2012). Ourmodel assumes
that the service for each quantum of fluid consists of a sequence of two stages, the first stage for the
conversation with a customer and the second stage for the ACW. When the duration of each stage has
exponential, hyperexponential or hypo-exponential distribution, we derive the time-dependent behavior
of the content of fluid in each stage of service as well as that in the waiting room. Numerical examples
are shown to illustrate the system performance for the cases in which the input rate and/or the number
of servers vary in sinusoidal fashion as well as in adaptive ways and in stationary cases.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Queueing models have been widely used to model the per-
formance of call centers with impatient customers [1–4], which
means that customers in the waiting line may leave before getting
service. The multiserver queue M/M/s with impatient customers
is called Erlang-A model, ‘‘A’’ for ‘‘abandonment’’, in contrast with
the well-known Erlang-Bmodel (M/M/s/s) and the Erlang-C model
(M/M/swith only patient customers).

Through themeasurements at real call centers, however,we ob-
serve that operators usually spend sizable amount of time to com-
plete additional work after finishing conversation with customers.
For example, they enter customer profiles and summary of conver-
sation into the customermanagement database after conversation.
Such extra work of operators is called the after-call work (ACW).
Cleveland and Harne [5, Section 8] describe:

The ACW is the work that is necessitated by and immediately
follows an inbound transaction. Often includes entering data,
filling out forms and making outbound calls necessary to
complete the transaction. The agent is unavailable to receive
another inbound call while in this mode.
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The ACW is also called ‘‘post call activity’’ [6–8], ‘‘wrap-up times’’
[1], ‘‘after-hung-up times’’ [9], and ‘‘postservice activity’’ [10,11].
Harris and Phillips [6] mention:

The post call activity is a phase in which the operator may fill
out dockets, make supplementary phone calls or perform other
clerical activities before pressing a key to indicate that he/she
is able to accept another call from the queue (if such a call is
present).

Takagi and Taguchi [12] study a two-dimensional birth-and-
death process for theM/M/K /J queuewithACW,whereK , the num-
ber of servers, represents the total number of operators working in
the call center and J , the maximum number of customers accom-
modated in the system, stands for the number of incoming tele-
phone lines. Unlike usual queueing models, we do not necessarily
assume that J ≥ K , because servers may beworking on ACWwhile
some customers are present in the waiting room. Phung-Duc and
Kawanishi [13] present amatrix-geometric analysis for a queueing
model with retrial arrivals of blocked and abandoned customers.
All models in these pieces of work assume the steady state of the
system.

Another realistic feature of call center operation is that the
call input process is time-varying. However, the exact stochastic
analysis of a queueing model with multiple servers with generally
distributed service times and/or time-varying arrival process is
not easy. The fluid approximation technique has been exploited to
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Fig. 1. System model and state variables in the underloaded state.

Fig. 2. System model and state variables in the overloaded state.

deal with such models traditionally [14]. More recently, the fluid
approximation is applied to stationary multiserver queues with
impatient customers [15,16] aswell as thosewith the time-varying
input rate and number of servers [17–19].

In this paper, we present the fluid approximation for a multi-
server queueing model with impatient customers, two stages of
service time (representing the conversation and ACW in a call cen-
ter), and time-varying input rate and number of servers. Our ap-
proach is an extension of the method for the Mt/GI/st + GI model
originally developed by Liu andWhitt [20,19] (they later extended
the analysis to networks of fluid queues [21,22]). In this notation,
‘‘Mt ’’ means a Poisson arrival process with time-varying arrival
rate, the first ‘‘GI’’ an independent, generally distributed service
time, ‘‘st ’’ a time-varying number of servers, and ‘‘+GI’’ a general
abandonment-time distribution.

We show that the system state alternates between the under-
loaded interval inwhich there are idle servers and the overloaded in-
terval in which arriving fluid quanta must wait for service because
all servers are busy. We study the dynamics of the fluid content in
service in both underloaded and overloaded states. We also study
the dynamics of the fluid content in thewaiting roomand thewait-
ing time of a fluid quantum that arrives in the overloaded state. Our
analysis is applied to several illustrative cases with time-varying
input rate and number of servers. If the number of servers is deter-
mined adaptively to cope with only the load of conversation, the
system is always overloaded but it remains stable. If the number
of servers is determined adaptively in accordance with the load of
both conversation and ACW, the system is always underloaded.

To the best of the authors’ knowledge, this paper is the first
work inwhich the fluid approximation is applied to theMt/GI/st +
GI model with two stages of service time as a model of the call
center operation with ACW. This paper is partly based on the
Master Thesis of the first author [23] submitted to the Graduate
School of Systems, Information and Engineering of the University
of Tsukuba, Japan.

2. Fluid model of call center operation with after-call work

In this section, we introduce a fluid model of the call center
operation with ACW by extending the model and analysis by Liu
and Whitt [19,16].

2.1. Definition of the system model

We consider a fluid queueing system with multiple servers
where incoming calls in a call center are modeled by quanta of
fluid. We assume that the service time a server, representing an
operator, spends on each fluid quantum consists of a sequence of
two stages, called ‘‘service 1’’ for the conversation with a customer
and ‘‘service 2’’ for ACW, each having independent duration.

We assume that the same server continues to provide service 2
immediately after service 1 for each fluid quantum. Let there be
s(t) servers in the system at time t ≥ 0. The staffing function s(t) is
given exogenously or adaptively somehow depending on the input
rate of fluid. At any time, each server is either in service or being
idle such that si(t) servers are engaged in service i (i = 1, 2), where
s(t) ≥ s1(t) + s2(t).

The input of fluid quantum directly enters service 1 if there is
a server available; this state is called underloaded. Otherwise, the
input flows into the ‘‘waiting room’’ for service 1; this state is called
overloaded. No waiting room is needed for service 2 because the
same server takes care of the ACW for the fluid quantum that he
has just given service 1. The server who has finished service 2 can
start service 1 for another fluid quantum if any in thewaiting room,
or he becomes idle otherwise. The fluid quanta leave the system
either by completing service 2 or by abandonment while being in
the waiting room. The fluid quanta never leave the system during
services 1 and 2. For a system with time-varying staffing function,
we assume that the time variation in the total number of servers
is solely turned to the time variation in the number of servers
assigned to service 1. We also assume that the number of servers
assigned to each service never goes below the level of fluid content
in that service at any moment so that no fluid quanta are forced
out of the system once they have entered service. This model is
schematically depicted alongwith relevant state variables in Figs. 1
and 2 for the underloaded and overloaded states, respectively. The
state variables are introduced in the following subsection.

2.2. Definition of state variables and their relations

We assume that the fluid quanta arrive at service 1 according to
a deterministic processwith time-varying rateλ(t), t ≥ 0.We de-
note by F(x) and f (x) the distribution function and the probability
density function (pdf), respectively, for the abandonment time of
each fluid quantum in the waiting room. Also, we denote by Gi(x)
and gi(x) the distribution and density functions, respectively, for
the service time of each fluid quantum in service i (i = 1, 2). Thus
we have

F(x) :=

 x

0
f (u)du, Gi(x) :=

 u

0
gi(u)du x ≥ 0, i = 1, 2.

Furthermore, let F(x) and Gi(x) be their complimentary distribu-
tion functions (CDF’s) defined by

F(x) := 1 − F(x), Gi(x) := 1 − Gi(x) x ≥ 0, i = 1, 2.

These functions are assumed to be given in the model.
At time t(≥0), we denote by Q (t, x) the fluid content that has

been waiting for the time units less than or equal to x in the
waiting room. Similarly, we denote by Bi(t, x) the fluid content in
service that has been in service i for the time units less than or
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