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The Markowitz mean-variance portfolio optimization problem is a quadratic programming problem
whose first-order conditions require the solution of a linear system. It is well known that the optimal
portfolio weights are sensitive to parameter estimates, particularly the mean return vector. This has
generally been attributed to the interaction of estimation error and optimization. In this paper we present
some examples that suggest the linear system produced by the first-order conditions is ill-conditioned
and it is this property that gives rise to the sensitivity of the optimal weights.
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1. Introduction

The mean-variance portfolio optimization problem dates to the
pioneering work of Markowitz [ 1]. It is well known that the optimal
portfolio weights are sensitive to the parameter input, particularly
the mean return vector. See, for the example, the work of Best
and Grauer [2], Broadie [3], Chopra [4], Chopra and Ziemba [5],
Frankfurter et al. [6], and Michaud [7]. This sensitivity has generally
been attributed to the tendency for optimization to magnify the
effects of estimation error. For this reason, Michaud [7] has referred
to “portfolio optimization” as “error maximization”.

There is now a vast literature on how to deal with the prob-
lem. As might be expected, the literature focuses on improved
estimation procedures and model variations. Efforts to improve pa-
rameter estimation procedures include the work of Jobson and Ko-
rkie [8] and Jorion [9,10] on shrinkage estimators and Ledoit and
Wolf[11] on reducing the error in the estimation of the covariance
matrix. A host of researchers look at robust portfolio optimization
(see, for example, Goldfarb and Iyengar [12], Garlappi et al. [13],
and Lu [14]). Different formulations of the problem also include
the work of Black and Litterman [15], Konno and Yamazaki [16],
Simaan [17], and more recently, Jangannathan and Ma [18] and
DeMiguel et al. [19]. It is important to clarify what financial theo-
rists mean when they refer to robust portfolio optimization. In the
general sense, robust optimization implies finding solutions that
can be modified later in an effective manner once actual condi-
tions are known. However, with portfolio management, the input
parameters are consistently changing, and robustness in this set-
ting refers to finding solutions that are insensitive to these changes.
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That is, portfolio formation strategies are sought that are relatively
immune to variations in input values. Here, we offer no solution to
the problem. Rather, we make a simple but important point. It is
not always true that optimization magnifies estimation error and
we show this using the basic Economic Order Quantity Model. The
implication is that there has to be a deeper explanation of why
portfolio weights are so sensitive to estimation error. In our view,
this explanation has to do with the underlying structure of the model.
We argue that the first-order conditions of the Markowitz portfolio
optimization model result in a linear system that is ill-conditioned
and it is this poor conditioning that leads to the extreme sensitivity of
the portfolio weights.

This observation has a number of important implications. First,
it is very unlikely that improved estimation techniques will solve
the problem. DeMiguel et al. [20] took an exhaustive look at how
existing improved estimation procedures and different models
stacked up against a naive 1/n portfolio (a portfolio with funds di-
vided equally among n assets). They found that none of these of-
fered any significant performance improvement based on standard
measures (including the Sharpe ratio and certainty-equivalent re-
turn). This is consistent with our observation on conditioning that
we are not likely to find a magic bullet to solve the problem.

The work of Ledoit and Wolf [11] is particularly interesting.
They consider only the covariance matrix. They offer the equiva-
lent of a Stein estimator (i.e. a shrinkage estimator) for the covari-
ance matrix and show that it has nice consistency properties as the
dimension of the problem (both in the dimension of the covari-
ance matrix and the dimension of the data set used to estimate it)
gets large. Their estimator performs reasonably well and the condi-
tion of the covariance matrix falls dramatically for problems with
a large number of assets and a large dataset. However, there are
problems of interest where there is no guarantee that the dimen-
sion of the covariance matrix will be high. We have in mind the
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Strategic Asset Allocation Problem (SAAP) where only a handful of
global asset classes is considered. An example is the problem con-
sidered by Black and Litterman [15].

2. It is not just optimization magnifying estimation error

Among others, Michaud [7] has argued that the sensitivity of the
portfolio optimization problem is due to optimization magnifying
estimation error. But this cannot be the complete explanation.
After all there are many examples of optimization problems
where slight errors in the parameter input are not magnified by
optimization. For instance consider the Economic Order Quantity
model used for inventory decisions. This model argues that the
order size that minimizes transaction costs is

x* = kD (1)

where x* is the order size, k is a parameter that depends on the
costs of holding and processing inventory, and D is the demand
rate for the inventory over the period under consideration. Now
suppose a small error ¢ is made when D is estimated. Then we have
that

x*(e) = kD(1+ ¢) (2)

and the relative error is

x*(e) —x* kD1 +¢) — kD ” 3)
= ~ g .
x* v kD
Thus, a 10% error in the estimation of demand, leads to approxi-
mately a 5% change in the recommended inventory level. The im-

plication is that an explanation of solution sensitivity must appeal
to the underlying structure of the problem.

3. The sensitivity of the SAA portfolio

Here is an example which demonstrates the sensitivity of the
SAAP. Suppose an investor is considering a portfolio of three funds:
LargeCap Equity; Foreign; and Bond. The investor estimates that
expected returns for these are:

Asset Return
LargeCap 0.1213 (4)
Foreign 0.1548
Bond 0.0923
and the covariance matrix is
LargeCap  Foreign Bond
LargeCap 0.02528 0.02098 0.00411 )
Foreign 0.02098 0.05452 0.00085
Bond 0.00411 0.00085 0.00487.

Let the random return of asset i, r;, be normally distributed with
mean 7; and variance . Let the covariance of the returns on assets
i and j be ¢;. Suppose the investor is considering a portfolio where
a proportion, x;, of his total investment will go into asset i. The
expected return on the portfolio is

Tp =T1X1 + 12Xy +T3X3 (6)

and, for convenience, we define the risk measure to be 1/2 the
variance of the portfolio return:

1
D (X1, X2, X3) = EVUT(rp) (7)
L (8)
= —X X
2
1
= E[OEX% + a§x§ + 032X§ + 2c12%1%2 9)

+2¢13%1X3 + 2C23%2X3]

where r, = 11Xy 4+ X, + r3x3 is the uncertain portfolio return,
£2 is the covariance matrix, and x = (xq, X2, x3)7 is a vector of
portfolio weights. This investor wishes to minimize the variance of
his portfolio return subject to it producing a mean return ry. Hence
he will solve the following SAAP:

min = @(xq, X2, X3)
s.t. T1X1 +ToXy +T3X3 =19 (10)
X1+ Xy + X3 = 1.

The first-order necessary conditions require a solution of a linear
system:

0’12 Ci2 (13 —F1 -1 X1 0
C12 0'22 Cy3 —T, —1 X2 0
C13 (23 0'32 —-r3 -1 x3]=120 (11)
Fl Fz Fg 0 0 )Vr To
1 1 1 0 0 Ax 1

where A, and A, are Lagrange multipliers. The matrix of this system
is called the augmented covariance matrix and we represent it with
Q+ .

The solution of the system with r; = 0.135 and the parameter
input described in (4) and (5) is:
x1 = 0.195, x; = 0.593, x3 = 0.212. (12)

Suppose now the expected return on the LargeCap asset class is
changed from 12.13% to 13.34%, a change of 10%. Then the new

portfolio weights are
x; = 0.503, x, = 0.352, x3 = 0.145. (13)

Note that the LargeCap weight, xq, increases by 160%; the other
two change by an average of 36%. So a small change in a single
input parameter can give rise to substantial changes in the optimal
portfolio weights.

4. The origin of the sensitivity

Consider the linear system
Ax=0Db (14)

where A is an n x n matrix, and x and b are n x 1 vectors. We assume
that A is nonsingular. One definition of the norm of the matrix A is

lAx||
lAll = max —— (15)
x20 ||x]|
where
Xl = B+ +- -+ (16)

is the usual vector norm. It is easy to show that the definition (15)
is equivalent to

Al = max [lAX]| . (17)

[xll=1
The condition of A, k (A), is defined as
k(A) = Al x [|A7"] . (18)

Suppose the matrix is perturbed from A to A + §A. This leads to
the perturbed solution x + §x so that

(A+6A) (x+ dx) = b. (19)

Hence we have two systems

(A+8A) (x+8x) = b (20)
Ax = b. (21)
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