
doi: 10.1016/j.procs.2016.05.301 

A Performance Characterization of Streaming Computing

on Supercomputers

Stefano Markidis1, Ivy Bo Peng1, Roman Iakymchuk1, Erwin Laure1,
Gokcen Kestor2, and Roberto Gioiosa2

1 Computational Science and Technology Department, KTH Royal Institute of Technology,
Stockholm, Sweden

{markidis, bopeng, riakymch, erwinl}@kth.se
2 Computational Science and Mathematics Division, Pacific Northwest National Laboratory, WA

{Gokcen.Kestor, Roberto.Gioiosa}@pnnl.gov

Abstract

Streaming computing models allow for on-the-fly processing of large data sets. With the in-
creased demand for processing large amount of data in a reasonable period of time, streaming
models are more and more used on supercomputers to solve data-intensive problems. Because
supercomputers have been mainly used for compute-intensive workload, supercomputer per-
formance metrics focus on the number of floating point operations in time and cannot fully
characterize a streaming application performance on supercomputers. We introduce the injec-
tion and processing rates as the main metrics to characterize the performance of streaming
computing on supercomputers. We analyze the dynamics of these quantities in a modified
STREAM benchmark developed atop of an MPI streaming library in a series of different con-
figurations. We show that after a brief transient the injection and processing rates converge to
sustained rates. We also demonstrate that streaming computing performance strongly depends
on the number of connections between data producers and consumers and on the processing
task granularity.

Keywords: High-Performance Computing, Streaming Computing, Data-Driven Applications, Big Data

1 Introduction

Supercomputers consist of computing units and associated memories on computing nodes that
are connected via an high performance interconnection network. These networks are charac-
terized by small latency in the microsecond range and by a large bandwidth of the order of
GB/s [3]. The dominant programming system to implement communication across the net-
work is MPI [6] that provides a set of subroutines to explicitly send and receive data from one

Procedia Computer Science

Volume 80, 2016, Pages 98–107

ICCS 2016. The International Conference on Computational
Science

98 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.301&domain=pdf


process to another. Traditionally, supercomputers and MPI have been used for solving Par-
tial Differential Equations (PDE). Examples of these equations are Navier-Stokes equations for
Computational Fluid Dynamics, Maxwell equations for electromagnetic problems, Schrödinger
equation for Quantum Mechanics problems. Typically, these equations are discretized in space
on a computational grid and advanced in time with several computational steps. The com-
putational workload is divided among processes associated to a specific computing unit. Each
process computes the calculations relative to a small part of the grid. Interconnection com-
munication is needed to move data from processes mapped to different computing nodes. The
communication occurs regularly at each computational cycle, and it is typically coarse-grained
as a relatively large amount of data on ghost cells are communicated among processes. In these
problems, the time taken for communication is typically a fraction of the computation cost.
For this reason, these problems are referred as compute-intensive. Because supercomputers are
mainly used for solving compute-intensive problems, the widely used metric to characterize an
application performance is the number of floating point operations per second (FLOPS). This
quantity is measured using the High-Performance Linpack (HPL) benchmark [11]. More re-
cently the High Performance Conjugate Gradient (HPCG) benchmark has been used [5]. Both
the HPL and HPCG benchmarks measure FLOPS to solve a linear system.

Lately, supercomputers are more and more used for solving a different class of problems
that require the analysis and classification of large amount of data. The reason for this is that
conventional computing resource cannot support the analysis of such large amount of data in a
reasonable amount of time (Big Data). In this class of problems, the number of data movements
across memory spaces and interconnection network is much larger than the number of floating
point operations. These problems are also called data-intensive. A typical example of these
problems in the scientific domain is the analysis of the results from large experiments, such as
the Large Hadron Collider (LHC) and the future Square Kilometer Array (SKA). For instance,
the LHC facility stores 30 PB data per year. These data is analyzed to identify presence of the
Higgs boson and dark matter in the LHC data. As a second example, the SKA antennas will
provide a data rate in the order of 10 PB/s for radioastronomy studies [2]. Additional examples
of data-intensive problems include the analysis of data from spacecrafts for climate studies,
from seismology centers for earthquake observation and prediction, and from Next Generation
Sequencers (NGS) for bioinformatics research.

Data-intensive problems are typically formulated as a pipeline of several tasks that act on a
input data set to provide an output data set. For instance, the SKA task pipeline will include
signal processing, handling correlation and beam-forming, image generation and calibration [2].
Such a pipeline can be conveniently expressed with the streaming computing model. A stream
is an irregular data flow. Streams link different tasks of the pipeline of the data-intensive
application by providing input and output of the tasks. Communication in streaming systems
is irregular and fine-grained as stream communication units are typically small in size. The main
feature of streaming computing is that the results of each computational task are calculated
on-the-fly. The streaming model requires a single-pass analysis: stream elements (SE) are
consumable so that each stream element is only accessed and processed once. For this reason,
streaming computing allows for processing on-the-fly large data sets that do not fit to the
memory of the computing system without requiring the use of a batch system or intermediate
data storage. Because data is processed on-the-fly and computation must be completed before
disregarding the input data, tasks of the pipeline are strongly coupled and the data injection
and the processing capability are deeply correlated in the streaming system. Popular streaming
frameworks, such as Spark [12] and Flink [7], support applications written in Java, Python, Scala
but they are not specifically designed for running streaming computing on Supercomputer with

Streaming Computing on Supercomputers Markidis, Peng, Iakymchuk, Laure, Kestor, Gioiosa

99



Download English Version:

https://daneshyari.com/en/article/484076

Download Persian Version:

https://daneshyari.com/article/484076

Daneshyari.com

https://daneshyari.com/en/article/484076
https://daneshyari.com/article/484076
https://daneshyari.com

