Procedia Computer Science

CrossMark Volume 80, 2016, Pages 108-118
Procedic
ICCS 2016. The International Conference on Computational ompute
ER Science ence

High-Performance Tensor Contractions for GPUs

A. Abdelfattah!, M. Baboulin?, V. Dobrev?, J. Dongarral*, C. Earl3,
J. Falcou?, A. Haidar!, I. Karlin®, Tz. Kolev®, I. Masliah?, and S. Tomov*

! Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 University of Paris-Sud, France
3 Lawrence Livermore National Laboratory, Livermore, CA, USA
4 University of Manchester, Manchester, UK

Abstract

We present a computational framework for high-performance tensor contractions on GPUs.
High-performance is difficult to obtain using existing libraries, especially for many independent
contractions where each contraction is very small, e.g., sub-vector/warp in size. However, using
our framework to batch contractions plus application-specifics, we demonstrate close to peak
performance results. In particular, to accelerate large scale tensor-formulated high-order finite
element method (FEM) simulations, which is the main focus and motivation for this work, we
represent contractions as tensor index reordering plus matrix-matrix multiplications (GEMMs).
This is a key factor to achieve algorithmically many-fold acceleration (vs. not using it) due to
possible reuse of data loaded in fast memory. In addition to using this context knowledge, we
design tensor data-structures, tensor algebra interfaces, and new tensor contraction algorithms
and implementations to achieve 90+% of a theoretically derived peak on GPUs. On a K40c
GPU for contractions resulting in GEMMSs on square matrices of size 8 for example, we are
2.8x faster than CUBLAS, and 8.5x faster than MKL on 16 cores of Intel Xeon E5-2670
(Sandy Bridge) 2.60GHz CPUs. Finally, we apply autotuning and code generation techniques
to simplify tuning and provide an architecture-aware, user-friendly interface.

Keywords: Tensor contractions, Tensor HPC, GPU, Batched linear algebra, FEM, Applications

1 Introduction

The development of high-performance tensor algebra is important due to tensors’ frequent use
in physics and engineering, where tensors provide a foundational mathematical tool for brief,
yet comprehensive, formulations and solutions of problems in areas such as elasticity, fluid me-
chanics, multi-physics, quantum chemistry, general relativity, and many others [10]. Advances
in microprocessors and storage technologies have made it feasible to target higher dimension
and accuracy computational approaches that model mutilinear relations, e.g., in recent areas
of high interest such as various data analysis applications and machine learning; that can also
be formulated through tensors. At the same time, to enable these applications to efficiently

108 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
© The Authors. Published by Elsevier B.V.

doi:10.1016/j.procs.2016.05.302

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.302&domain=pdf

High-Performance Tensor Contractions for GPUs A. Abdelfattah et al.

use tensor computations on current hardware, and in particular GPUs, a number of research
challenges must be addressed, including advances in the development of scalable, tensor-based
algorithms, autotuning, and code generation techniques, that are targets of this paper, towards
setting the foundations for a high-performance tensor algebra library for accelerators [3].

Tensors are multi-dimensional arrays that can be used to describe physical properties featur-
ing multilinear relations. Well known mathematical objects like scalars, vectors, and matrices
can be generalized to tensors that are of order zero, one, and two, respectively. Also, tensor
transformations like flattening of a tensor to matrices or reshaping of matrices into tensors,
can be used to link tensor computations to the developments in high-performance numerical
linear algebra (LA). Therefore, similar to many applications, tensor computations can also sig-
nificantly benefit from representing their computations in terms of BLAS, as well as from other
dense LA algorithms and techniques for multicore and GPU architectures. While a compre-
hensive LAPACK-style initiative to tensors may be still far away [1], this work concentrates on
the development of tensor contractions — a building block for tensor computations — through
leveraging the current LA developments for GPU and multicore architectures in libraries like
BLAS and MAGMA [20], and more specifically the MAGMA Batched computational frame-
work [6, 8, 9].

Microprocessor and storage technology advances have significantly influenced the design of
high-performance numerical algorithms and libraries over the years. While humans perceive
well algorithms expressed in terms of scalar computations (tensors of order zero), advances
towards vector machines in the 70's lead to the development of the LINPACK library to use
vector operations (or 1%%-order tensors), which was redesigned for performance into LAPACK
in the 80’s to better use cache-based machines through matrix-matrix operations (2"%-order
tensors). Operations on higher-dimensional data were added in the 90's for distributed-memory
systems, where ScaLAPACK was designed for 2D-block cyelic matrix distributions. For the
emerging in the 00’s multicore architectures, the PLASMA library introduced tiled algorithms
and tiled data layouts (4*"-order tensors; see Figure 1). In the 2010’s, the MAGMA libraries
were designed for heterogeneous architectures, including current investigations on new data
layouts, functionalities, batched computations, and possibly generalizations to tensors, in order
to provide applications new functionalities to deal efficiently with multi-dimensional data.

n Matrix & in tiled data-layout Tensor contractions in hine learning (C MNeural Networks in compuder vision]
h, . v
g 1 2 345 67 asa 4M-order tensor, i,j,m,n Canwelben Paclng Comvalien qu Ouput
i) | | . |!.-" Declare a 4™-order Tenscr A& on the GPU l pricne
1 i I T <64, 64, 9, 8, gpu_t> A;]
. 1 | - L !
2 | | || A rari-64 update as tensor contraction on index k - E%mn 3
3. f—t t | T T (fori=0.63 forj=063 form=128 forn=1.7) [T
| | .
m4 | | : A'f"" 2‘4'-‘-"“’0‘*-“‘-' Convolulion of Fiflers F, {foalure datection) and input image 0:
J | . * For every fiflor F. and every chamnel, the computation for
i el value O, , 15 al tract]
= — et l + L I . // DSEL dessgn using Einstesn notation: repeated FAREARNUNL Sah m”rmﬁ_” o
3] | 1 | A4 index k MEANS 3 SUMMAtIon/contraction. o~ ED._.P 5
— T // Range of the other indices i full/range as + Plecty of para smal ons tat must be Batehved
71 4 £/ given through the left assignment operand + Wit dat reshape” the computation can be translormed o
8 .| All,) m:1..8, m1..7) = A(l, km,0) * Alk, LOn}; 2 batched GEMM {for eficioncy, among other approathes)

Figure 1: Left: Example of a 4""-order tensor resulting from tile matrix layout used in dense
LA, a tensor contraction, and a possible tensor contractions design using Einstein summation
notation and a Domain Specific Embedded Language (or DSEL) . Right: Illustration of tensor
contractions needed and viable approaches to solve them in machine learning,

Figure 1 Left illustrates the notion of tensor and tensor contraction in DLA, as well as one
of our tensor contraction design using a DSEL . Figure 1 Right illustrates the need of tensor

contractions in machine learning. The computational characteristics in this case are common

109

Download English Version:

https://daneshyari.com/en/article/484077

Download Persian Version:

https://daneshyari.com/article/484077

Daneshyari.com

https://daneshyari.com/en/article/484077
https://daneshyari.com/article/484077
https://daneshyari.com/

