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Abstract
Numerical solution of partial differential equations (PDEs) on manifolds continues to generate
a lot of interest among scientists in the natural and applied sciences. On the other hand, recent
developments of 3D scanning and computer vision technologies have produced a large number
of 3D surface models represented as point clouds. Herein, we develop a simple and efficient
method for solving PDEs on closed surfaces represented as point clouds. By projecting the
radial vector of standard radial basis function(RBF) kernels onto the local tangent plane, we are
able to produce a representation of functions that permits the replacement of surface differential
operators with their Cartesian equivalent. We demonstrate, numerically, the efficiency of the
method in discretizing the Laplace Beltrami operator.
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1 Introduction

Many applications in the natural and applied sciences require the solution of partial differential
equations on manifolds. Such applications arise in areas such as computer graphics[18, 10, 1],
image processing[20, 2, 9, 21], mathematical physics[5], biological systems[17, 8], and fluid
dynamics[11, 12, 19].A lot more interest, especially in computer graphics, has been generated
around solution of PDEs on closed 2D manifolds, as these arise as boundaries of 3D objects.
The development of high resolution 3D scanning devices, which capture these surfaces as point
clouds, have made numerical methods that can be applied directly to point clouds very attrac-
tive.
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A class of numerical methods that have been developed to solve PDEs on closed surfaces,
involve the expression of differential operators as projections of their Cartesian equivalents
onto local tangent planes via a projection operator (I − �n�nT ). The resulting operators are
then discretized using, for example, finite element methods[6]. Recently, the projection method
has been extended to PDEs defined on manifolds represented as point clouds [4]. For such
methods, functions defined on the manifold are represented using radial basis functions (RBF).
The surface differential operators are obtained by applying a projection operator to the RBF
discretization of the Cartesian equivalent.

While the projection methods modify Cartesian differential operators, another class of meth-
ods embed the surface PDE into �3 so that solutions to the embedded problem when restricted
to the surface provide the solution on the surface[7]. Because these methods result in embeded
PDEs posed in �3, spatial complications arise when the PDEs have to be solved on a restricted
surface domain. The closest point method, developed in [16], attempts to resolve this problem
by extending the functions into �3 in a way that makes them constant in the normal direction.
This allows the simple replacement of surface differential operator by their Cartesian equivalent.
The method however requires a high order interpolation at each time step in order to obtain
solutions on the surface.

Recently, the orthogonal gradient method presented in[13], was introduced to extend this
idea to point clouds. Here, 2N additional nodes are introduced during the construction of a
distance function, to force the function defined on the surface to be constant in the normal
direction. The 2N nodes are chosen according to an offset parameter δ which controls their
distance from the surface. The accuracy of the method and condition number of the resulting
differential matrix is however sensitive to the choice of δ. The use of 2N additional nodes, to
enforce derivative constraints, increases the computational complexity of forming the interpo-
lation and differential matrices.

In this work we propose a modified RBF kernel, the Cylindrical Basis Function (CBF), which
is intrinsically constant in the normal direction at each point of a surface. The modified kernel,
when used in the representation of smooth functions defined on a closed surface, allows surface
differential operators to be replaced by their Cartesian equivalent without the need to impose
additional constraints on the function or have an implicit representation of the surface. We
also avoid inherent challenges in performing higher order interpolation, typical of embedding
techniques, by discretizing operators directly on the manifold. The proposed method is simple
and requires the solution of a much smaller linear system, compared to the orthogonal gradient
method.

2 The Radial Basis Function

Given function data {fk}Nk=1 at the node locations {xk}Nk=1 ∈ �d, the RBF interpolant s(x) to
the data is given as

s(x) =

N∑
i=1

λiφ(‖ x− xi ‖), (1)

where φ(‖ x−xi ‖) is the RBF kernel centered at the node xi, and λi are coefficients chosen
to satisfy the interpolation conditions

s(xi) = f(xi) i = 1 · · ·N, (2)

which is equivalent to solving the linear system

A�λ = �f. (3)
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