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Abstract

A new computational model for brittle fracture and fragmentation has been developed based
on finite element analysis of non-linear elasticity equations. The proposed model propagates
the cracks by splitting the mesh nodes alongside the most over-strained edges based on the
principal direction of strain tensor. To prevent elements from overlapping and folding under
large deformations, robust geometrical constraints using the method of Lagrange multipliers
have been incorporated. The model has been applied to 2D simulations of the formation and
propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and
compressed materials.
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1 Introduction

Computational study of brittle fracture networks are of great interest to engineers who work
with material that breaks before it can undergo plastic deformation. This can occur when the
material is in a “pre-stressed” configuration, where small deformations and strains can lead the
material to surpass its internal critical stress. Of great importance to engineers is the prediction
of crack nucleation and overall dependence of the resulting crack pattern on material properties.

Computational methods are of growing importance in modeling brittle fracture in materials.
Due to the complex nature of fracture mechanics, several phenomenological methods have been
proposed. Such methods include generalized and extended finite element methods (X-FEM)
[9, 11], cohesive element (CE) models [3], and spring models [15].

The extended FEM (X-FEM) [11] and the generalized FEM (GFEM) [12], which are closely
related and both belong to the partition of unity methods (PUM) [9], enrich the traditional
FEM function space with families of discontinuous shape functions, which can model the dis-
placements of either the crack tip or opposite sides of the crack plane. The main advantage lies
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in the fact that the interface can be studied within each individual element without having to
constantly remesh near the crack tip. The types of enrichment functions can model a variety
of engineering problems the crack tip including branching [7], material interfaces, and soft dis-
continuities. More recently, a phantom node method, which is a variant of the extended FEM
was developed in [13].

Cohesive zone models (CZM) were first introduced by Barenblatt [3] and have been incor-
porated into commercial FEM codes. The CZM is intriguing because it explicitly avoids the
creation of stress singularities by modeling inter-element traction-displacement relationships.
Elements become separated when their tractions exceed a critical threshold, and the location
of the “cohesive elements” (CE) can generate complex fracture networks. Cohesive elements
have been used in traditional finite element codes by Xu and Needleman [18] and Ortiz and Ca-
macho [6]. Additionally, cohesive zone models have been incorporated into other finite element
frameworks such as X/G-FEM [11], meshless methods [2], and isogeometric analysis [14]. While
CZMs may provide complex fracture structures, it was noted in [8] that CZMs are dependent
on aspects of the mesh.

Spring models were introduced in [5, 10] and have the advantage of very simple implemen-
tation of solid mechanics and fracture mechanics. For example, Meakin [10] modeled fracture
using a two-dimensional network of springs with a critical tension parameter. Over-strained
springs were removed to simulate the propagation of fracture. Beale added random defects and
perturbations to a spring model to investigate their effects on the propagation of the crack sur-
face [5]. However, both of these models implemented fracture mechanisms by removing springs;
thereby losing mass conservation and “obliterating” material under compression.

Recently, Wei et al. [15] investigated the use of mass conservative spring models, and were
able to reproduce complex fracture networks in two and three dimensions. The method used
nonlinear optimization of the global energy functional and split vertices adjacent to springs that
were strained past a pre-defined threshold. The advantage of this method was that it conserved
mass and produced rich crack networks throughout the material. The work demonstrated
complex fracture patterns, which qualitatively change due to variations in material properties.

The spring network model of [15] is difficult to integrate into pre-existing finite element
software. The intent of this paper is to apply the fracture mechanisms of [15] to existing finite
element codes. In this work, we describe the fracture mechanism incorporated into a finite
element solid mechanics code as well as collision detection algorithms to prevent inter-element
penetration.

The remainder of the paper is divided as follows. In Section 2, the principles of continuum
mechanics and their implementation within the finite element method are briefly discussed.
In Section 3, the fracture mechanism is described, and particular emphasis is placed on the
detection of intersecting elements and their resolution through the introduction of Lagrange
multipliers. In Section 4, we present some verification of our FEM code and simulation results
with our fracture model. Finally, we present concluding remarks in Section 5.

2 Finite Element Based Brittle Fracture Model

Finite element analysis is an important tool in the study of solid mechanics and fracture me-
chanics in particular. Linear elastic fracture mechanics (LEFM) has been well-studied using
methods such as X-FEM and CZM. However, the range of applications of LEFM is limited by
the assumptions of linear elasticity, which is valid for small displacements and small strains.
In many applications involving brittle fracture, large displacements and rotations may occur
while the strain exhibited within a material may still be in the elastic regime. Therefore, it is
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