Available online at www.sciencedirect.com

C@k ScienceDirect Procedia

Computer Science

A

ELSEVIER Procedia Computer Science 63 (2015) 16 — 23

The 6th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2015)

Pervasive Data Processing

Ichiro Satoh

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 Japan

Abstract

This paper presents a data processing framework for enabling MapReduce approach to be available in pervasive networks, including
sensor networks and Internet of Things (IoT). It is unique among other existing MapReduce-based approaches, because it can
locally process data maintained on nodes in pervasive networks. It dynamically deploys programs for data processing at the
nodes that have the target data as a map step and executes the programs with the local data. Finally, it aggregates the results
of the programs to certain nodes as a reduce step. The paper proposes the architecture of the framework and describes its basic
performance and application.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Program Chairs

Keywords: Data processing, distributed systems, sensor network

1. Introduction

Pervasive networks connects a variety of devices such as everyday consumer objects and industrial equipment onto
the network, enabling information gathering and management of these devices via software to increase efficiency,
enable new services, or achieve other health, safety, or environmental benefits. The networks generate large quantities
of data that need to be processed and analyzed in real time. They assumed to transfer massive amounts of small
message sensor data to data centers or cloud computing environments for processing, because the computational
resources of their devices have assumed to be limited. Several approaches to processing a large amount of data at
data centers. Among them, MapReduce is one of the most typical and modern computing models for processing large
data sets in distributed systems. It was originally studied by Google? and inspired by the map and reduce functions
commonly used in parallel list processing (LISP) or functional programming paradigms. Hadoop, is one of the most
popular implementations of MapReduce and was developed and named by Yahoo!.

* Corresponding author. Tel: +81-3-4212-2546.
E-mail address: ichiro@nii.ac.jp

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Program Chairs

doi:10.1016/j.procs.2015.08.307


http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.307&domain=pdf

Ichiro Satoh / Procedia Computer Science 63 (2015) 16 — 23

Processing large quantities of data generated from devices in real time will increase as a proportion of inbound
traffics and workloads in networks from pervasive networks to data centers. However, bandwidth of networks between
pervasive networks and data centers tend to be slow and unreliable. Pervasive networks generate massive amounts of
input data from nodes. Transferring the entirety of that data to a single location for processing will not be technically
and economically viable,

However, modern pervasive devices tend to have certain amounts of computational resources. For example, a
Raspberry Pi computer, which has been one of the most popular embedded computers, has 32 bit processor (700
MHz), 512 MB memory, and Ethernet port. Therefore, such pervasive devices have potential capabilities to execute a
small amount of data processing. In fact, we have already installed and evaluated Hadoop on Raspberry Pi computers
with Linux, but its performance is not practical even when the size of the target data is small, e.g., less than 10MB.

Hadoop has been essentially designed for be executed on high performance servers and it is complicated so that
it is almost impossible to redesign Hadoop for pervasive devices, e.g., embedded computers. Therefore, this paper
is to propose a MapReduce framework available at limited computers and network, e.g., Raspberry Pi computers,
independently of Hadoop. The framework has three key ideas. to save computational resources at node. The first
is to deploy and execute programs for data processing at nodes that has the target data. The second is to introduce
management functions into programs for data processing. The third is to provide KVS for MapReduce processing
available with limited memory.

The author proposed another MapReduce framework based on mobile agent technology®, independently of the
previous one except for the notion of the deployment of programs for data processing. The framework proposed in
this paper is constructed based on our previous framework but it is designed for executing on embedded computers or
IoT devices.

2. Related Work

The tremendous opportunities to gain new and exciting value from big data are compelling for most organizations,
but the challenge of managing and transforming it into insights requires new approaches, such as MapReduce process-
ing. It originally supported map and reduce processes®. The first is invoked dividing a large scale data into smaller
sub-problems and assigning them to worker nodes. Each worker node processed the smaller sub-problems. The sec-
ond involves collecting the answers to all the sub-problems and aggregates them as the answer to the original problem
it was trying to solve. There have been many attempts to improve Hadoop, which is an implementation of MapReduce
by Yahoo! in academic or commercial projects. However, there have been few attempts to implement MapReduce
itself except for Hadoop. For example, the Phoenix system® and the MATE system* supported multiple core proces-
sors with shared memory. Also, several researchers have focused on iteratively executing MapReduce efficiently, e.g.,
Twister?, Haloop !, MRAP, and SSS°. These implementations, except for SSS, assume data in progress to be stored
at temporal files rather than key-value stores in data nodes and SSS executes data stored in a key-value store shared
from task nodes and then its results the key-value store. They assume data to be stored in high-performance servers
for MapReduce processing, instead of in the edges.

Google’s MapReduce, Hadoop, and other existing MapReduce implementations have assumed their own dis-
tributed file systems, e.g., the Google file system (GFS) and Hadoop file system (HDFS), or shared memory between
processors. For example, Hadoop needs to move target data from the external storage systems to HDFS via networks
before processing these.

Our MapReduce system does not move data between nodes. Instead, it deploys program codes for defining process-
ing tasks to nodes that have data by using the deployment of components corresponding to the tasks and it executes the
codes with their current local data. Hadoop and its extensions are unsuitable in sensor networks and embedded com-
puters, because its file system, HDFS, tends to become a serious bottlenecks in the operation of Hadoop and it often
requires wide band networks, which may not be available in sensor nodes or embedded computers. In the literature on
sensor networks, The Internet of Things (IoT), and machine-to-machine (M2M) communications, several academic
or commercial projects have attempted to support data at the edge, e.g., at sensor nodes and embedded computers. For
example, Cisco’s Flog Computing and EMC’s computing intend to integrate cloud computing over the Internet and
peripheral computers. However, most of them do not support the aggregation of data generated and processed at the
edge.



Download English Version:

https://daneshyari.com/en/article/484540

Download Persian Version:

https://daneshyari.com/article/484540

Daneshyari.com


https://daneshyari.com/en/article/484540
https://daneshyari.com/article/484540
https://daneshyari.com

