

Available online at www.sciencedirect.com

Applied Catalysis B: Environmental 79 (2008) 101-107

www.elsevier.com/locate/apcatb

$Co/K_xTi_2O_5$ catalysts prepared by ion exchange method for NO oxidation to NO₂

Qiang Wang^a, So Ye Park^b, Jin Seong Choi^b, Jong Shik Chung^{a,b,*}

^a School of Environmental Science and Engineering, POSTECH, Pohang 790-784, Republic of Korea ^b Department of Chemical Engineering, POSTECH, Pohang 790-784, Republic of Korea

Received 22 November 2006; received in revised form 19 September 2007; accepted 21 September 2007 Available online 5 October 2007

Abstract

 $Co/K_xTi_2O_5$ catalysts prepared by ion exchange method were tested for NO oxidation to NO₂. Their catalytic activities are similar to Pt-based catalysts and much higher than Co impregnated on TiO₂ with or without doped K. The conversion pattern shows a typical kinetic control at low temperatures and thermodynamic control at higher temperatures, exhibiting a peak temperature at which the conversion becomes a maximum. Conversion decreases sharply as oxygen concentration decreases below 1.0%. NO concentration shows a positive effect on the conversion. The presence of Co_3O_4 and K ion remaining in $K_xTi_2O_5$ after the ion exchange is responsible for the observed catalytic activity. Thus, $Co/K_xTi_2O_5$ having a complete ion exchange with little K is not active for the reaction. Unlike Pt-based catalyst, the presence of NO₂ does not inhibit catalytic activity. $Co/K_xTi_2O_5$ was resistant to the presence of SO₂ less than 10 ppm. High-NO oxidation activity and high resistance to SO₂ and NO₂ make $Co/K_xTi_2O_5$ a promising catalyst for NO oxidation.

© 2007 Elsevier B.V. All rights reserved.

Keywords: NO oxidation; Co/KxTi2O5; Co/TiO2; SO2 poisoning

1. Introduction

Lean burn engines, of which diesel engine is a common example, are generally more fuel-efficient than stoichiometric engines, thereby giving a longer traveling distance per unit of fuel and, consequently, reduced CO_2 emission [1]. However, emission standards of diesel engines are becoming more and more severe. In 2005, for example, soot and NO_x productions were limited to 25 mg km⁻¹ and 250 mg km⁻¹, respectively, according to Euro IV regulations, twice as low as Euro III standards [2]. In order to meet NO_x emission levels, three approaches can be used: NO_x storage and reduction (NSR), selective catalytic reduction (SCR) and continuously regenerating trap (CRT) [3–8].

For adopting these technologies, it becomes evident now that NO_2 plays a decisive role [9,10]. For the NO_x storage and reduction (NSR), NO is first oxidized to NO_2 on platinum and then stored on BaO as nitrate [11]. For selective catalytic

reduction (SCR) technology, it has been proved that SCR reaction rate can be substantially increased, when a fraction of NO in the exhaust is converted to NO₂. This effect is more pronounced at lower temperatures (200–300 °C) when the reaction mixture contains equimolar amounts of NO and NO₂ (fast SCR process) [12–14]. For continuously regenerating trap (CRT), NO₂ is used as a strong oxidizer to oxidize soot collected on a particulate filter at comparably low temperatures. These temperatures are much lower than the ignition temperature of soot in air, which is typically around 550 °C.

However, nitrogen oxides $(NO + NO_2)$ produced by combustion engines consist mainly of NO. Thus, the oxidation of NO to NO₂ is an important step for the after treatment reactions. At present, it is mainly achieved by using Pt-based catalyst or plasma. Pt-based catalysts have been comprehensively studied by many authors in the area of oxidation efficiency with NO and O₂; influence of Pt particle size; effects of precursors and support, SO₂, water and CO [14,15,17–23]. Kinetic modeling and simulations have also been carried out. For commercial application of Pt-based catalysts, however, many problems remain to be solved [2,16,24,25]. Pt has shown a decrease of activity when it was exposed to NO + O₂ at 250 °C [2,19,26]. This deactivation was attributed, according to

^{*} Corresponding author at: San 31, Hyoja-Dong, Nam-Ku, Pohang 790-784, Republic of Korea. Tel.: +82 54 279 2267; fax: +82 54 279 5528.

E-mail address: jsc@postech.ac.kr (J.S. Chung).

^{0926-3373/\$ –} see front matter \odot 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.apcatb.2007.09.038

XPS data, to the oxidation of Pt to PtO or PtO₂, which are less active than reduced platinum. Pt-based catalyst also oxidizes SO₂ to SO₃, which then forms sulfate with support alumina (such as Al₂(SO₄)₃), leading to a decrease in the catalytic activity [2,17,21,33]. Mulla et al. [22] have reported that the presence of water vapor in the feed results in an irreversible decrease in the active Pt surface area and a corresponding loss of NO conversion, for both Pt-K/Al₂O₃ and Pt/Al₂O₃ catalysts. The blocking of the Pt sites caused possibly by the migration of impurities from the support is believed to be the reason of the water poisoning. Zhu et al. [27] have also concluded that silica is not a good support when water is present although silica has been found to be better than alumina in the absence of water.

There has been little attempt to search substitute for Pt-based catalyst. Kantcheva et al. [28,29] have reported that Co^{3+} ions are able to oxidize NO to NO^{2-} and NO^{3-} species at room temperature, which could be a promising substitute for Pt-based catalyst. Mulla et al. [22] observed a lower apparent activation energy for Pt/K/Al₂O₃ catalyst (60 kJ mol⁻¹) compared to Pt/Al₂O₃ catalyst (82 kJ mol⁻¹). The turnover rate was also higher on Pt/K/Al₂O₃ catalyst. This promotional effect of K on Pt was by a factor of about 2 at 300 °C. They attributed it to the enhancement of O₂ absorption on Pt/K/Al₂O₃ surface.

It is widely accepted that TiO_2 is more resistant to SO_x . Therefore, a catalyst composing of Co, K and TiO_2 might have a potential for NO oxidation to NO₂ and low SO_x poisoning. Recently it has been found that $K_2Ti_2O_5$ exhibits the highest catalytic activity and photoluminescence compared with other layered titanates [30]. The present study reports a new catalyst of Co/K_xTi₂O₅ as alternative of Pt-based catalysts. Study includes preparation and characterization of the catalysts and activity comparison with Pt-based catalysts for the NO oxidation. The reaction was investigated by varying concentration of oxygen, nitrogen oxide and GHSV. The active species and the promotion effect of support for NO oxidation were also studied. Deactivation of the catalysts in the presence SO_2 and NO₂ was also evaluated.

2. Experimental

2.1. Catalyst synthesis

The flow chart of the synthesis of $\text{Co/K}_x\text{Ti}_2\text{O}_5$ catalysts is outlined in Fig. 1. $\text{K}_2\text{Ti}_2\text{O}_5$ was first prepared by solidstate reaction. Potassium carbonate (Yakuri Pure Chemical Co., Ltd.) and titanium dioxide (Hombikat UV 100) were mixed together with a proper amount of water (molar ratio of K_2CO_3 :TiO₂:H₂O = 1:2:15), and subjected to ball milling for 24 h. After being dried and crushed to fine powder, it was calcined at 850 °C for 10 h in air to obtain $\text{K}_2\text{Ti}_2\text{O}_5$. Co/ $\text{K}_x\text{Ti}_2\text{O}_5$ was prepared by introducing 2 g $\text{K}_2\text{Ti}_2\text{O}_5$ powder into 200 ml aqueous solution of $\text{Co}(\text{NO}_3)_2$ (Junsei Chemical Co., Ltd.). After the solution was kept stirring for a certain time, it was filtered and dried and this was followed by calcination at 500 °C for 5 h in air. By controlling the exchange time and the concentration of the Co precursor solution, we could get catalysts having different amount of K and Co loading.

Fig. 1. Procedure of preparing $Co/K_xTi_2O_5$.

For comparison purpose, 20 wt.%Co/TiO₂ and 5 wt.%Co/TiO₂ catalysts were prepared by impregnation method. $Co(NO_3)_2$ (Junsei Chemical Co., Ltd.) solution was added to TiO₂ powder (Hombikat UV 100) drop by drop to the incipient wetness. 5 wt.%Co-1 wt.%K/TiO₂ catalysts were also synthesized with different kinds of K precursors, including potassium carbonate (Yakuri Pure Chemical Co., Ltd.), potassium nitrate (Shinyo pure chemicals CO., Ltd.) and potassium acetate (Sigma–Aldrich, 99 + % A.C.S reagents) by the same impregnation method. They were then dried at 105 °C over night and calcined at 500 °C for 5 h in air. All catalysts in present work were calcined using a box furnace in a static air environment.

2.2. Catalyst characterization

The compositions of the $Co/K_xTi_2O_5$ catalysts were examined by atomic absorption analysis (Model Spectra AA 800). BET surface area were obtained by measuring the amount of adsorbed N₂ at liquid N₂ temperature by means of Micromeritics ASAP 2010 sorption analyzer. The samples Download English Version:

https://daneshyari.com/en/article/48455

Download Persian Version:

https://daneshyari.com/article/48455

Daneshyari.com