
 Procedia Computer Science   83  ( 2016 )  284 – 291 

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.04.127 

ScienceDirect
Available online at www.sciencedirect.com

The 7th International Conference on Ambient Systems, Networks and Technologies
(ANT 2016)

Impact of execution modes on finding Android failures

Inês Coimbra Morgadoa,b,∗, Ana C. R. Paivaa,b

aDepartment of Informatics Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
bINESC TEC Porto, Porto, Portugal

Abstract

The iMPAcT tool combines the benefits of existing user recurring behaviour (User Interface Patterns) on mobile applications to

facilitate the test automation of Android mobile applications. It uses an automatic exploration process combined with reverse

engineering to identify the existing user interface patterns on a mobile application and then tests those patterns with generic test

strategies (designated Test Patterns). The Test Patterns are defined in a catalogue that can be reused for testing other applications.

However the results obtained by the iMPAcT tool depend on the exploration mode and on the order in which the test strategies are

applied. This paper describes an experiment conducted to evaluate the impact of using different exploration modes and of changing

the order by which UI patterns are searched and subsequently tested on the failures found and on the number of events fired.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Mobile Testing; UI Patterns; Reverse Engineering; Android; Test Automation; Case Study

1. Introduction

Smartphones have been gaining a strong participation in our daily lives. Furthermore, the number of mobile

applications available has exceeded one million and the number of downloads has exceeded fifty billion[1].

This huge number of applications increases the rivalry among suppliers that need to ensure that their applications

work correctly as thoroughly as possible if they want them to make a stand. Even though there are several approaches

focused on test automation[2–6], the peculiarities of the mobile world, such as new development concepts, like activi-

ties, new interaction gestures and limited memory, make mobile testing a challenging activity [7,8]. The World Quality

Report 2014-15[9] mentions that the greatest challenge for mobile testing is the lack of the right testing processes

and methods, followed by insufficient time to test and the absence of in-house mobile test environments. Thus, it is

extremely important to automate mobile testing.

Reverse engineering[10] is a technique used to aid in test automation as it provides information about the AUT.

When reverse engineering a mobile application, dynamic techniques may be more appropriate than static ones due to

the event-based nature of mobile applications: in this kind of applications most of the content is produced dynamically,

∗ Corresponding author. Tel.:+351225081400, fax:+351225081440

E-mail address: pro11016@fe.up.pt

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.04.127&domain=pdf


285 Inês Coimbra Morgado and Ana C.R. Paiva  /  Procedia Computer Science   83  ( 2016 )  284 – 291 

e.g., the information presented on the screen depends on the order of the events previously fired, which is extremely

difficult to analyse statically.

There are also some studies showing the usefulness of using patterns for mobile testing. In 2009, Erik Nilsson[11]

identified some recurring problems when developing an Android application and the User Interface (UI) patterns that

could help solve them. In 2013, Sahami Shirazi et al. [12] studied the layout of Android applications trying, among

other goals, to verify if these layouts presented any UI Patterns. They concluded that 75.8% of unique combinations of

elements appeared only once in the application. This study was conducted taking into consideration a static analysis

of the layout and its elements. There is also some literature on the presence of UI Patterns on mobile applications,

such as [13].

One of the main problems of dynamic reverse engineering is the dependence between the order in which the

application is explored and the results obtained. The exploration may be random or guided, i.e., follow an exploration

algorithm, such as depth-first.

The iMPAcT tool [14] combines the benefits of existing UI Patterns and reverse engineering to ease mobile test

automation. The tool uses dynamic reverse engineering to detect the presence of UI patterns and then tests them using

generic test strategies, called Test Patterns (more details in Section 3). The results obtained by the tool depend both

on the order in which the different events are executed and on the order the different patterns are identified and tested.

This paper reports the results obtained by the iMPAcT tool when using different exploration modes and different Test

Patterns testing orders.

The remaining of the paper is structured as follows. Section 2 presents some related work. Section 3 describes the

approach implemented in the iMPAcT Tool. Section 4 presents the case study and corresponding results. Section 5

presents the drawn conclusions.

2. Related Work

Model based testing (MBT) approaches generate test cases from models according to coverage criteria. Even

though MBT generates test cases automatically, the effort invested in building the model should not be neglected. To

reduce this effort it is possible to use reverse engineering approaches to extract part of an existing application model

and work from there.

Software reverse engineering has long been a field of research. There are several approaches that extract models

from desktop[15–17] and web[18–20] applications. Regarding the mobile world, to the best of our knowledge, there is

no approach focusing Windows Phone applications and only a handful of approaches dealing with iOS application, in

the last years.

Even though reverse engineering approaches can be static (when they analyse the source code), dynamic (when they

analyse the application at run time) or a combination of both (hybrid), the event-based nature of mobile applications

makes the dynamic and hybrid approaches more common. Nevertheless, there are some, like Batyuk et al. [21] who

identify possible security vulnerabilities like unwanted user access, by applying static approaches.

Regardless of the techniques used, the purpose of reverse engineering in the context of mobile applications is to

obtain a model of the application and/or to test it. The work of Yang et al. [22] is an example of the first as it presents a

hybrid approach: an initial static phase identifies the possible events to be fired and a second dynamic phase explores

the application by firing those events and analysing their effects on the application. An example of the latter is the

work of Amalfitano et al. in 2012[7] which is similar to the exploration phase of the approach presented in this paper

and in 2013[23], in which they generate test cases but follow a dynamic approach with reflection and code replacement

techniques.

Mobile application testing (or mobile testing) has been gaining interest by researchers because it presents additional

challenges when compared to the testing of other types of applications, such as, web or desktop[8].

Mobile testing can be performed automatically and the market already offers several automatic options for test case

execution, including the two official ones for Android: Espresso1 and UI Automator2. The main difference between

1 https://developer.android.com/training/testing/ui-testing/espresso-testing.html
2 https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html



Download English Version:

https://daneshyari.com/en/article/485367

Download Persian Version:

https://daneshyari.com/article/485367

Daneshyari.com

https://daneshyari.com/en/article/485367
https://daneshyari.com/article/485367
https://daneshyari.com

