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Abstract
Reservoir computing is a recent trend in neural networks which uses dynamical perturbations
in the phase space of a system to compute a desired target function. We show one can for-
mulate an expectation of system performance in a simple model of reservoir computing called
echo state networks. In contrast with previous theoretical frameworks, which uses annealed
approximation, we calculate the exact optimal output weights as a function of the structure
of the system and the properties of the input and the target function. Our calculation agrees
with numerical simulations. To the best of our knowledge this work presents the first exact
analytical solution to optimal output weights in echo state networks.
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1 Introduction

In this paper we report our preliminary results in building a framework for a mathematical
study of reservoir computing (RC) architecture called the echo state network (ESN). Reservoir
computing (RC) is a recent approach in time series analysis that uses the transient dynam-
ics of a system, as opposed to its stable states, to compute a desired function. The classic
example of reservoir computing is the echo state network, a recurrent neural network with
random structure. These networks have shown good performance in many signal processing
applications. The theory of echo state networks treats memory capacity [4], (how long can the
network remember its inputs), and the echo state property [16], (long term convergence of the
phase space of the network). In RC, computation relies on the dynamics of the system and
not its specific structure, which makes the approach an intriguing paradigm for computing
with unconventional and neuromorphic architectures [11–13]. In this context, our vision is to
develop special-purpose computing devices that can be trained or “programmed” to perform
a specific task. Consequently, we would like to know the expected performance of a device
with a given structure on given a task. Echo state networks give us a simple model to study
reservoir computing. Extant studies of computational capacity and performance of ESN for

1

Procedia Computer Science

Volume 41, 2014, Pages 176–181

BICA 2014. 5th Annual International Conference on Biologically
Inspired Cognitive Architectures

176 Selection and peer-review under responsibility of the Scientific Programme Committee of BICA 2014
c© The Authors. Published by Elsevier B.V.

doi: 10.1016/j.procs.2014.11.101 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.11.101&domain=pdf


Towards a Calculus of Echo State Networks Goudarzi and Stefanovic

various tasks have been carried out computationally and the main theoretical insight has been
the upper bound for linear memory capacity [5, 10, 15].

Our aim is to develop a theoretical framework that allows us to form an expectation about
the performance of RC for a desired computation. To demonstrate the power of this frame-
work, we use it to calculate the optimal weights for ESN to reconstruct its previous inputs.
Whereas previous attempts used the annealed approximation method to simplify the prob-
lem [15], we derive an exact solution for the optimal output weights for a given system. Our
formulation reveals that ESN computes the output as a linear combination of the correlation
structure of the corresponding input signal and therefore the performance of ESN on a given
task will depend on how well the output can be described as the input correlation in various
time scales. Full development of the framework will allow us to extend our predictions to
more complex tasks and more general RC architectures.

2 Background

In RC, a high-dimensional dynamical core called a reservoir is perturbed with an external input.
The reservoir states are then linearly combined to create the output. The readout parameters
are calculated by regression on the state of a teacher-driven reservoir and the expected out-
put. Unlike other forms of neural computation, computation in RC takes place within the
transient dynamics of the reservoir. The computational power of the reservoir is attributed
to a short-term memory created by the reservoir [8] and the ability to preserve the temporal
information from distinct signals over time [9]. Several studies attributed this property to the
dynamical regime of the reservoir and showed it to be optimal when the system operates in
the critical dynamical regime—a regime in which perturbations to the system’s trajectory in
its phase space neither spread nor die out [1–3, 14]. The reason for this observation remains
unknown. Maass et al. [9] proved that given the two properties of separation and approxima-
tion, a reservoir system is capable of approximating any time series. The separation property
ensures that the reservoir perturbations from distinct signals remain distinguishable, whereas
the approximation property ensures that the output layer can approximate any function of the
reservoir states to an arbitrary degree of accuracy. Jaeger [7] proposed that an ideal reservoir
needs to have the so-called echo state property (ESP), which means that the reservoir states
asymptotically depend on the input and not the initial state of the reservoir. It has also been
suggested that the reservoir dynamics acts like a spatiotemporal kernel, projecting the input
signal onto a high-dimensional feature space [6].

3 Model

Here we restrict attention to linear ESNs, in which both the transfer function of the reservoir
nodes and the output layer are linear functions, Figure 1. The readout layer is a linear combi-
nation of the reservoir states. The readout weights are determined using supervised learning
techniques, where the network is driven by a teacher input and its output is compared with
a corresponding teacher output to estimate the error. Then, the weights can be calculated us-
ing any closed-form regression technique [10] in offline training contexts. Mathematically, the
input-driven reservoir is defined as follows. Let N be the size of the reservoir. We represent
the time-dependent inputs as a column vector u(t), the reservoir state as a column vector x(t),
and the output as a column vector y(t). The input connectivity is represented by the matrix V
and the reservoir connectivity is represented by an N × N weight matrix W. For simplicity, we
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