

Available online at www.sciencedirect.com

Procedia Computer Science 86 (2016) 152 - 155

2016 International Electrical Engineering Congress, iEECON2016, 2-4 March 2016, Chiang Mai, Thailand

A Current-mode Square/Triangular ware Generator based on Multiple-output VDTAs

Montree Siripruchyanun^{1,a,*}, Kangwal Payakkakul^{2,a}, Paisit Pipatthitikorn^{3,a}

and Pracharat Satthaphol^{4,a}

^aIntegrated Circuit Design Research Center, Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand

Abstract

This article presents the square/triangular wave generator based on multiple output voltage differencing transconductance amplifiers (MO-VDTAs). The circuit topology is simple, consists of only two MO-VDTAs and a few grounded passive components. The features of the proposed circuit are that, its amplitude and frequency can be independently controlled by bias current of the MO-VDTAs, which is not dependent on power supply level. The PSpice simulation results are depicted that they agree well with the theoretical analysis. The total power consumption is approximately 14.3mW at ± 1.5 V power supply voltages. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of iEECON2016

Keywords: Square/triangular wave generator, MO-VDTA

1. Introduction

A square/triangular wave generator is extensively used in communication systems, instrumentation and analog signal processing applications. Hence, the square/triangular wave generator was successively developed by different active blocks such as current conveyors [1], CFOAs [2], OTRA [3]. However, these reported circuits suffer from some weaknesses, such as using of a floating resistor which is inappropriate to further fabricate in IC and lacking of electronic controllability of output magnitude and frequency [1-3].

^{*} Corresponding author. Tel.: +662-5552000; fax: +662-5878255. *E-mail address*: ¹mts@kmutnb.ac.th, ²kangwal.p@gmail.com, ³paisit.pi@hotmail.com, ⁴pracharat2012@gmail.com

VDTA is an active building block. This element was derived from the previously introduced current differencing transconductance amplifier (CDTA) [4]. This means that the VDTA is composed of the current source controlled by the difference of two input voltages and a multiple-output transconductance amplifier. The VDTA is very useful in electronic circuits such as oscillator [5], filters [4, 6-7], Schmitt trigger [8] and etc. Recently, the MO-VDTA was employed in a simple square wave generator circuit [9]. Unfortunately, it works in voltage-mode. The voltage-mode circuits also suffer due to the poor slew rate of the used active building blocks.

Presently, there is a growing interest in synthesizing current-mode circuits because of more their potential advantages such as larger dynamic range, higher signal bandwidth, greater linearity, simpler circuitry and lower power consumption [10-11]. In the point of view, the current-mode technique is ideally suited to this purpose more than the voltage-mode type.

Therefore, this paper presents a simple architecture of a current-mode square/triangular wave generator which is very simple by using only two MO-VDTAs with single grounded capacitor and two grounded resistors. The output frequency and amplitudes can be independently/electronically adjusted. Hence, it can be directly applied in an automatic control system via a microprocessor. The performance of circuit was proved by PSpice simulation and the results were correspondent in the theoretical analysis.

2. Basic concept of MO-VDTA

The MO-VDTA element is a simple active building block comprising transconductances section, as shown in Fig. 1. The characteristic and relationship of voltage and current are shown in Eq. (1)

$$\begin{bmatrix} I_z \\ I_{x1} \\ I_{x2} \\ I_{x3} \end{bmatrix} = \begin{bmatrix} g_{m1} & -g_{m1} & 0 \\ 0 & 0 & \pm g_{m2} \\ 0 & 0 & \pm g_{m3} \\ 0 & 0 & \pm g_{m4} \end{bmatrix} \begin{bmatrix} V_p \\ V_n \\ V_z \end{bmatrix},$$
(1)

where g_{m1} , g_{m2} , g_{m3} and g_{m4} are transconductances of the MO-VDTA, which equal

$$g_{m1} = \frac{I_{B1}}{2V_T}, \ g_{m2} = \frac{I_{B2}}{2V_T}, \ g_{m3} = \frac{I_{B3}}{2V_T}, \ g_{m4} = \frac{I_{B4}}{2V_T}.$$
(2)

 V_T is the thermal voltage. The symbol and the equivalent circuit of the MO-VDTA are shown in Fig. 1(a) and Fig. 1(b), respectively.

Fig. 2. The proposed square/triangular wave generator

Download English Version:

https://daneshyari.com/en/article/486902

Download Persian Version:

https://daneshyari.com/article/486902

Daneshyari.com