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Abstract 

In this paper, a method for further reducing computation time for Fast Look-Ahead Rao-Blackwellized Particle filtering (Fast la-
RBPF) for Simultaneous Localization and Mapping (SLAM) problem is presented. By using the pose posterior probability, states 
with low posteriors are excluded from the Kalman filtering updates to the computation time can be reduced. In conjunction with 
Fast la-RBPF, the proposed algorithm is then called the Posterior Elimination Fast la-RBPF SLAM algorithm. Simulation results 
show that the proposed method is more efficient in terms of computation time than Fast la-RBPF without any sacrifice in both 
localization and mapping error performances. 
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1. Introduction 

In SLAM problems, Kalman filtering and its variants are used extensively as in the Extended Kalman Filter 
SLAM (EKF-SLAM) or RBPF in FastSLAM [1], [2]. Performance comparisons across different Kalman-based 
algorithms for SLAM have also been carried out. In [3], EKF-SLAM is compared versus FastSLAM whereas the 
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results showed that FastSLAM achieves superior accuracy than EKF-SLAM. In [4], a one step look-ahead (la) in 
RBPF for SLAM problem is proposed, the algorithm is then called the la-RBPF SLAM. The simulation results 
showed that la-RBPF can achieve higher accuracy in location and mapping than RBPF but the computation time of 
la-RBPF is much greater. In [5], a technique to reduce the computation time called Fast la-RBPF SLAM is 
proposed. In this paper, we propose a method for reducing computation time in Fast la-RBPF by using the posterior 
probabilistic criterion in the context of SLAM problems. The algorithm is then called the Post Fast la-RBPF SLAM. 
In [6], a similar technique is also used for reducing computation time for a particle filtering based algorithm but in 
the context of fault diagnosis in which the number of states to compute is much smaller than in SLAM. The 
simulation results for robot location errors, robot mapping errors and total computational times of the proposed 
algorithm at different number of particles compared with existing algorithms are shown in the simulation section.

NOTATION: The conditional probability distribution is denoted by P(⋅ | ⋅) , conditional probability density is 
denoted by p(⋅ | ⋅)  and conditional expectation operator is denoted byE{⋅ | ⋅} . 

2. The Posterior Elimination on Fast la-RBPF for SLAM Algorithm 

The importance weights of particle ith in la-RBPF was developed in [5] by summation of the normal distribution 
of each possible robot pose 
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t−1
[i ] (z

t
) , p(z

t
| z
t−1
[i ] ,y

t−1
)  and Post(i,zt)  denote prediction measurement mean, prediction 

measurement covariance, robot pose prior and robot pose posterior respectively, and ith represent each particles.n
z

is 
number of total possible robot poses in constant map. The RBPF, la-RBPF, Fast la-RBPF and Post Fast la-RBPF use 
KF prediction step by the set of equation (3) for estimating the set of feature location (map) and set of feature 
observation 
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observation. Next step is resampling step by using equation (2). And KF update or correction step by set of equation 
(3) 
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For reduction in computation time in la-RBPF [5], when the robot pose posterior of any particle is the same as 
previous particles, previous mean and covariance are substituted without any KF computation in (3). In order to 
cope with the problem of too many small posteriors, two strategies have been proposed by means of thresholding as 
in [5] or by employing Gaussian kernel posterior elimination as in [7].  

For Post Fast la-RBPF SLAM, we propose to further reduce the computation time by defining a using existing 
Post(i−1,zt)  information for its prediction Post(i,zt) . Any state with posterior poses lower than or equal to a 
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