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Abstract

In computer science, robustness is the ability of a computer system to cope with errors during execution. Robust codes are

new nonlinear systematic error detecting codes that provide uniform protection against all errors, whereas classical linear error-

detection code detects only a certain class of errors. Therefore, defence by the linear codes can be ineffective in many channels

and environments, when error distribution is unknown. The probability of error masking can increase depending on codeword

distribution. However, mapping the most probable codewords to a predefined set can reduce the maximum of the error masking

distribution.

The algorithm proposed in this paper is based on the second-order wavelet decomposition of B-splines under non-uniform nets.

In this paper, we propose a general approach to the algorithm construction of spline-wavelet decompositions of linear space over an

arbitrary field. This approach is based on the generalization of calibration relations and functional systems, which are biorthogonal

to basic systems of relevant space. The obtained results permit the construction of second-order spline-wavelet robust code.
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1. Introduction

Modern error injection techniques allow an adversary to attack cryptographic devices by inducing errors of any

multiplicity. The errors can be induced into every part of the codeword. One of the most efficient countermeasures

against these attacks are error detecting codes. Error detecting codes are widely used for telecommunication channels.

They ensure the reliability and security of devices from soft and hard errors, and also side channel attacks. Side

channel attacks can be detected with relatively high probability by security-oriented codes. Security-oriented codes

are robust and partially robust codes. Currently, the problem of finding new constructions of robust and partially

robust codes is actual. Different types of robust codes, partially robust codes, and minimum distance robust codes

were offered in [2,3,6,8]. One disadvantage of robust codes is that these codes assume that the information bits are
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uniformly distributed and are not known to an attacker. In practice, however, there are codewords that are much more

likely to appear than others.

This article explores the robustness of code, that is derived from second-order spline-wavelet transforms. In this

paper we show that using a specific method of net selection and element discarding, the second-order spline-wavelet

reconstruction formula can be transformed to a coding function of robust code. The article examines the robust-

ness ability of second-order spline-wavelet code in case of non-uniform codeword distribution. Gray mapping most

probable codeword of proposed code to a predefined set can be used to reduce the maximum of the error masking

probability.

2. Theory of the spline-wavelet decomposition

Piecewise functions (second-order splines) have been used in mathematics since Euler. Spline theory was devel-

oped in the middle of the XX-th century. The term spline was introduced in mathematics by Isaac Schoenberg (1946)

and splines were used for theoretical investigations until 1960. Since 1960, however, splines have also been used

for computer simulations in science, engineering and techniques. Wavelet is mathematical function used to divide a

given function or a continuous-time signal into different components. Experiments of using wavelets decomposition

of splines on grids for simulations of information stream are provided [10,11].

Let Z be the set of all integers. On finite or infinite interval (α, β) of the real axis R1 consider the net: X � {x j} j∈Z,

X : . . . < x−1 < x0 < x1 < . . . , (1.1)

for which α = lim
j→−∞ x j, β = lim

j→+∞ x j,∀ j ∈ Z. (1.2)

(The same result is valid for the finite net, enough to consider the trace of all objects in the interval embedded in

(α, β)). Segments [x j, x j+1] are called elementary net segments of the net X. Denote the linear space of functions that

are continuously differentiable in points of the open interval (α, β) as C1(α, β). On the net X, consider polynomial

second-order spline ω j ( j ∈ Z):

ω j(t) = (t − x j)
2(x j+1 − x j)

−1(x j+2 − x j)
−1, for t ∈ [x j, x j+1); (1.3)

ω j(t) = (x j+2 − x j)
−1(x j+2 − x j+1)−1(x j+3 − x j+1)−1 ×

[
(x j − x j+2 − x j+3 + x j+1) t2 − 2(x j+1x j − x j+2x j+3) t+

+x jx j+1x j+3 − x jx j+2x j+3 + x jx j+1x j+2 − x j+1x j+2x j+3

]
, for t ∈ [x j+1, x j+2); (1.4)

ω j(t) = (t − x j+3)2(x j+3 − x j+2)−1(x j+3 − x j+1)−1, for t ∈ [x j+2, x j+3], (1.5)

ω j(t) = 0 for t � [x j, x j+3], so supp ω j[x j, x j+3]. (1.6)

In the space C1(α, β) we consider the linear functionals g(i), i ∈ Z defined by formula

〈g(i), u〉 � u(xi+1) + (xi+2 − xi+1)u ′(xi+1)/2

∀u ∈ C1(α, β). (1.7)

For a fixed k ∈ Z let

x j � x j for j ≤ k − 1, x j � x j+1 for j ≥ k, ξ � xk

and consider the new net X : . . . < x−1 < x0 < x1 < . . ..
Second-order splines ω j, based on the new net X, are represented by formulas (1.3) – (1.6) with replacement nodes

x j of the net X on the nodes x j of the net X. Obviously, for j � {k − 3, k − 2, k − 1}, splines ω j coincide with splines

discussed previously:

ω j(t) ≡ ω j(t),∀ j ≤ k − 4;ω j(t) ≡ ω j+1(t),∀ j ≥ k. (1.8)
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