
 Procedia Computer Science 62 (2015) 650 – 653

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of The 2015 International Conference on Soft Computing and Software Engineering
(SCSE 2015)
doi: 10.1016/j.procs.2016.05.115

ScienceDirect
Available online at www.sciencedirect.com

The 2015 International Conference on Soft Computing and Software Engineering (SCSE 2015)

2-Bit Branch Predictor Modeling Using Markov Model

Reem Elkhoulya, Ahmed El-Mahdya,b, Amr Elmasrya,c

aDept. of Computer Science and Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
bOn leave from Dept. of Computer Engineering and Systems, Alexandria University, Alexandria, Egypt

cDept. of Computer Engineering and Systems, Alexandria University, Alexandria, Egypt

Abstract

Power consumption is a very important issue when it comes to embedded devices, therefore every processing cycle should be

optimally utilized and considered. In speculated execution, highly mispredicted branches are considered a critical threat for both

time and power saving. In this paper, we show that, for a specific branch, misprediction rate of a 2-bit branch predictor can be

precisely calculated using Markov model. Further, this can be done offline for more power saving. Thus, a decision of replacing

the branch with conditional (predicated) instructions instead of counting on the predictor can be made.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of organizing committee of The 2015 International Conference on Soft Computing and Software

Engineering (SCSE 2015).

Keywords: Branch Predictor; Modeling; Embedded Systems.

1. Introduction

Low power processors such as the ones used in embedded devices are becoming ubiquitous. These limited hard-

ware platforms have to be carefully considered on the software design phase. Relying on speculative execution may

not always be an optimal course of action in terms of time cost that translates into more power consumption[1]. As the

processor mis-loads the next instruction to be executed, then flushes it to load another instruction instead[2], thereby

wasting valuable processing cycles. So, if those power greedy branches are precisely detected in advance, the pro-

cessor can stall fetching instructions till the branch target is known. In accordance, a significant amount of power

is saved. Predicated instructions were introduced to overcome misprediction by converting control-dependence into

data-dependence via guarded execution[3]. However, predication comes at the extra cost of executing ‘nullified’ in-

structions, potentially degrading performance and costing more processing cycles. Moreover, branches interact in

terms of allowing for different execution schedules, for which finding the optimal schedule is generally a hard com-

binatorial search problem. Therefore, these type of instructions should be carefully considered. In this paper, we

introduce a Markov model for the 2-bit branch predictor, usually used for embedded processors such as (ARMv6k),

that can estimate the misprediction rate offline. Consequently, this information could be used in the software compil-

ing to convert some branches to otherwise costly predicated instruction and enhancing the overall performance and

time cost, hence saving power consumption.

2. The Model

The 2-bit saturating counter is a Finite State Machine (FSM) that is widely used as a branch predictor; see Figure 1.

We consider modeling this FSM as a Markov chain where the probability of success (p) is the probability of a branch

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of The 2015 International Conference on Soft Computing and Software
Engineering (SCSE 2015)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.115&domain=pdf

651 Reem Elkhouly et al. / Procedia Computer Science 62 (2015) 650 – 653

Not TakenStrongly Taken

Taken

Not Taken

Weakly Taken

Taken

Not Taken

Weakly Not Taken

Taken

Not Taken

Strongly Not Taken Taken

Fig. 1. 2-bit Saturating Counter Branch Predictor

being taken and the probability of failure (q = 1 − p) is the probability of a branch being not taken. Then, the model

can be expressed with the following equations:

π ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S st S wt S wnt S snt

S st p q 0.0 0.0
S wt p 0.0 q 0.0
S wnt 0.0 p 0.0 q
S snt 0.0 0.0 p q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=π

,where π =
[
x y z w

]
and x + y + w + z = 1

x =
p3

p3 + p2q + pq2 + q3
y =

p2q
p3 + p2q + pq2 + q3

z =
pq2

p3 + p2q + pq2 + q3
w =

q3

p3 + p2q + pq2 + q3

P(correctprediction) = P(success) = p(x + y) + q(z + w)

=
p3 + q3

p3 + p2q + pq2 + q3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1

M
is

pr
ed

ic
tio

n
R

at
e

p

Fig. 2. Misprediction rate calculated by the model

When we apply the model to the range of branch probability to be taken or not taken starting from zero to one, we

get the result shown in Figure 2. The peak of the graph at p = 0.5 represents the maximum uncertainty. That is when

the branch is 50% mispredicted. While the tails of the graph indicate 100% correct prediction as the branch is always

taken or always not taken.

3. Experiments

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0 20 40 60 80 100

T
im

e
(s

)

Taken Branch (%)

Branches
Conditional Inst.

Fig. 3. ARM Performance Measurements

We simulated the behaviour of the 2-bit predictor

to capture the correlation between the input data –

which is the basic specifier of the probability to take

the branch (p) – and the probability of correct pre-

diction (Pexper., the experimental value). Then, we

used the model to calculate the same probability an-

alytically (Pmath., the calculated value). We ran an

iterative mergesort algorithm; see Algorithm 1, on

inputs that are integers from different distributions:

uniform, normal, and sorted data. The comparison

between the mathematically calculated and the sim-

ulation counted probabilities is shown in Table 3. We also simulated the predictor and tested it on the RasberryPi

ARM1176JZF-S (ARMv6k) 700 MHz. In this processor, the branch misprediction penalty is 6 cycles. To show how

expensive the misprediction is on the ARM processor, we test a simple code that would contain a single branch in-

struction if the code version was written using branched code (contains jumps) as opposed to the other version which

was written using conditional (predicated) instructions. Both versions of the code are shown in Listing 1, 2. We exe-

cuted these pieces of code with different sets of input data (1M integers), which consequently control the probability

of the branch to be taken (or the conditional instruction to be executed),and we recorded the results shown in Figure

3. Similar to what is found in Figure 2, the peak of runtime is at 50% taken branch due to maximum mispredic-

Download English Version:

https://daneshyari.com/en/article/487328

Download Persian Version:

https://daneshyari.com/article/487328

Daneshyari.com

https://daneshyari.com/en/article/487328
https://daneshyari.com/article/487328
https://daneshyari.com

