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Abstract

In visual adaptive tracking, the tracker adapts to the target, background, and conditions of the image sequence. Each update

introduces some error, so the tracker might drift away from the target over time. To increase the robustness against the drifting

problem, we present three ideas on top of a particle filter framework: An optical-flow-based motion estimation, a learning strategy

for preventing bad updates while staying adaptive, and a sliding window detector for failure detection and finding the best training

examples. We experimentally evaluate the ideas using the BoBoT dataseta. The code of our tracker is available onlineb.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

The goal of visual tracking is to determine the location of a target in each frame or to detect its disappearance. If

the target is known beforehand, a classifier can be trained with all appearances and a reasonable number of negatives.

However, if the target appearance is unknown or somehow not involved in the classifier training, then it might be

missed. Algorithms that update the classifier while tracking are able to follow the target in these situations, adapting

to the appearance, background, and recording conditions. This is useful in HCI scenarios, e.g. where a robot has to

keep track of the person it is interacting with regardless of pose, (out-of-plane) rotations, illumination changes etc.

Adaptive trackers usually start with a single annotated frame that indicates the location of the target, e.g. by using

a bounding box. The goal of the tracker is to estimate the new target position in each of the following frames and to

detect when the target is missing. If the tracker does not adapt itself, then it might lose the target, but if it does, then

it will introduce errors with each update1. We refer to Wu et al. 2 for a recent survey of adaptive tracking algorithms.

a ”Bonn Benchmark on Tracking”, http://www.iai.uni-bonn.de/∼kleind/tracking/
b http://adaptivetracking.github.io/
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Typically, adaptive tracking algorithms use the estimated target position as the positive training example3,4,5, but

there are also approaches that use semi-supervised learning algorithms to determine the optimal positive training

examples6,7. STRUCK8 avoids the problem of assigning binary labels (target vs. background) altogether by learning

the target displacement using structured output prediction. Because of costly computation, STRUCK only searches

at the initial scale and therefore cannot adapt the bounding box size after the first frame. The tracker of Klein and

Cremers3 builds upon a particle filter for estimating the target state. The classification confidence of the target position

is used to decide whether a boosted classifier is updated. Tracking-Learning-Detection (TLD)4 combines an optical-

flow-based tracker and a sliding window detector that correct each other’s errors. Supančič III and Ramanan9 proposed

a tracker that re-evaluates past decisions and corrects errors made in previous frames, but was not designed to run in

real-time. A very fast tracker was presented by Kolarow et al. 5. To achieve more than real-time speed, they reduced

the object model to a single sparse template that is created anew in every frame unless an occlusion is detected.

The core contribution of our work is the fusion of a particle-filter-based adaptive tracker with three enhancements

and evaluating their influence on the tracking performance. (1) Optical flow incorporates the current measurement

into the prediction, which leads to a better proposal distribution, so the particles can follow the target more closely

even under rapid movements. (2) The introduction of a simple learning condition reduces drift by only updating

with confident target locations. (3) Adding a sliding window detector increases the quality of the negative training

examples, while also enabling fast re-detection and failure detection. By combining these ideas on top of an adaptive

particle filter framework we obtain a robust real-time tracking algorithm.

2. Tracking algorithm and its extensions

Our baseline algorithm is similar to the one of Klein et al. 10. The main differences are in the motion model and

choice of features and classifier. The tracking system estimates the state x = (x, y, s, ẋ, ẏ, ṡ)T of the target, which

consists of position, size and change of these. The aspect ratio is fixed and will be set at the initial frame. A particle

filter11 estimates the probability distribution of the target state at time t using a set of particles S t = {sk
t }, k ∈ {1, . . . , n}.

Each particle sk
t = (xk

t , π
k
t ) consists of a state xk

t and an importance factor (weight) πk
t , which is computed by the

measurement model using the current frame. The target state is then calculated as the weighted mean over all particle

states x̄t =
1
n
∑n

k=1 π
k
t xk

t . If the classifier score of the estimated target position falls below a threshold, the target is

considered lost. This may happen in the case of occlusions, leaving the field of view or drifting away from the real

target. Next, we describe three essential parts of the tracker and the enhancements on top of them.

2.1. Motion model

In the baseline tracker, we apply a simple constant velocity motion model to predict the new target state before

incorporating the new measurement. The first extension is to estimate the actual motion of the target by computing the

optical flow, resulting in a more accurate optical-flow-based motion model. We use the method of Kalal et al. 12, where

the flow between the previous and current frame is estimated by a regular grid of points within the target bounding

box. To reduce the likelihood of the points capturing the background, we changed the grid to an inset circle-like shape.

2.2. Classifier update

The classifier is re-trained using supervised learning. There are two key assumptions for generating new labeled

training data: the smoothness of the trajectory and the uniqueness of the target. If the target’s movement is fairly

smooth, the tracker is able to follow it closely, which makes it possible to extract new positive training examples from

the estimated target position in each frame. If the target is considered to be unique, then any training example extracted

from the remainder of the frame has to have a negative label. As long as the tracker provides a target position, the

classifier can be re-trained using the new training examples from the current frame. To prevent adapting to wrong

objects such as occluders, we do not update the classifier if the estimated target location is classified as negative.

Updating the classifier immediately after each frame keeps it up-to-date and leads to a quick adaptation to changes,

but also drifts away quickly in case of erroneous updates. Extending the tracker with a learning condition3 prevents

updates in uncertain situations. Our base tracker already has a weak learning condition, as our classifier is only
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