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Abstract 

The data of real-world optimization problems are usually uncertain, that is especially true for early stages of system design. Data 
uncertainty can significantly affect the quality of the nominal solution. Robust Optimization (RO) methodology uses chance and 
robust constraints to generate a robust solution immunized against the effect of data uncertainty. RO methodology can be applied 
to any generic optimization problem where one can separate uncertain numerical data from the problem's structure. Since 2000, 
the RO area is witnessing a burst of research activity in both theory and applications. 
However, RO could lead to over-conservative requirements, resulting in typical-case bad solutions or even empty solution 
spaces. This drawback of the classical RO methodology can be overcome by distinguishing between real decision variables and 
so-called state variables. While the first type should satisfy the chance or robust constraints and their value cannot depend on a 
specific realization of the uncertain data, the state variables are adjustable (i.e., their value can depend on the specific realization 
of the uncertain data), since most of the constraints defining state variables merely “calculate” their exact value, and hence are 
always satisfied. In this paper we summarize how adjustable RO approach can be applied to a general uncertain linear 
optimization problem. Then, using an allocation example we demonstrate how this approach can be integrated in the design 
optimization process and its impact on the optimal system design. 
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1. Introduction 

The data of real-world optimization problems more often than not are uncertain – not known exactly at the time 
the problem is being solved. The reasons for data uncertainty include, among others, measurement and estimation 
errors coming from the impossibility to precisely measure/estimate the data entries representing the characteristics 
of physical systems/technological processes/environmental conditions, etc. In addition, implementation errors 
coming from the impossibility to implement a solution exactly as it is computed, could also be modeled as data 
uncertainty. In real-world applications of optimization, one cannot ignore cases where a small uncertainty in the data 
can make the nominal optimal solution completely meaningless. The Robust Optimization (RO) offers a 
methodology capable of detecting cases when data uncertainty can heavily affect the quality of the nominal solution, 
and generate a robust solution immunized against the effect of data uncertainty. The goal of RO is to find a robust 
optimal solution, i.e. find values for decision variables which are feasible for all possible values of uncertain 
parameters, while optimizing the uncertain objective. By itself, the RO methodology can be applied to any generic 
optimization problem where uncertain numerical data belonging to a given uncertainty set could be separated from 
the certain problem structure (i.e, goals, constraints, and decision variables). 

The origins of RO date back to the establishment of modern decision theory in the 1950s and the use of the worst 
case analysis. The paradigm of RO per se, goes back to A.L. Soyster1 who was the first to consider, as early as in 
1973, what now is called Robust Linear Programming. In two subsequent decades there were only two publications 
on the subject2,3. The activity in the area was revived circa 1997, independently and essentially simultaneously, in 
the frameworks of both Integer Programming4 and Convex Programming5,6,7,8. Since 2000, the RO area is 
witnessing a burst of research activity in both theory and applications, with numerous researchers involved 
worldwide. 

The standard way to deal with Robust Optimization problem is to find a computationally tractable certain 
optimization problem called (Approximated) Robust Counterpart (RC), which solution is feasible for the original 
problem's robust constraints, meets its chance constraints with corresponding probabilities and is (approximately) 
optimal for its objective. The RO methodology is constraint-wise, i.e. it is applied sequentially per problem 
constraint. Different modeling techniques and principles are typically applied to robust inequality constraints, robust 
equality constraints and to chance constraints in order to transform the uncertain problem into its robust counterpart. 
It should be noted that these special techniques are generally not known to non-experts.  

When trying to apply the RO methodology to real life problems we face several challenges, since the classical 
robust optimization is suitable only where the following set of assumptions hold: 
  All decision variables represent “here and now” decisions; they should be assigned specific numerical values as 

a result of solving the problem before the actual data “reveals itself”. 
 The decision maker is fully responsible for consequences of the decisions to be made when, and only when, the 

actual data is within the pre-specified uncertainty set U. 
 The constraints are hard, meaning that we cannot tolerate violations of constraints, even small ones, when the 

data is in U. 
However, real life problems often involve state variables, which are not “real” decision variables, thus the first 

assumption can be relaxed. These variables are called adjustable variables and the constraints containing these 
variables can be treated differently. The resulting counterpart is called Adjustable Robust Counterpart9 (ARC).  In 
addition, while the original uncertain design problem can be mixed integer linear problem (MILP), its 
(approximated) Robust Counterpart could be non-linear. Unfortunately, most of existing optimization solvers are not 
suitable to solve non-linear problems efficiently. Hence, it is important to find linear formulations or approximations  
of the uncertain problems counterparts. Another challenge is the formulation of uncertainty sets. In literature, the 
uncertainty set U is usually considered to be independent of the problem structure and is given in an explicit form. 
However, in real-life problems the definition of U is not given explicitly and may depend on the value of some of 
the decision variables. Moreover, real uncertainties can depend on decisions not always explicitly described as 
decision variables in the original uncertain optimization problem.  

Thus, in spite of existing classical techniques, transformation of an uncertain real-life problem to a tractable 
approximation of its robust counterpart may be a hard and complex process. Consider the following uncertain MILP 
problem: 
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