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Abstract

In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadri-
lateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous
normal fluxes, since they are developed within a variational framework as mixed finite element methods with special
approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system
for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a
non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence
for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids.
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1. Introduction

We discuss the development of a family of numerical schemes for second order elliptic problems. These methods,
referred to as multipoint flux mixed finite element (MFMFE) methods, allow for an accurate and efficient treatment of
full tensor coefficients, irregular geometries and heterogeneities that require highly distorted grids and discontinuous
coefficients. These schemes are shown to be cell-centered discretizations and to have convergent approximations for
both the scalar variable and its flux. Following the terminology for Darcy flow, we refer to the scalar variable as
pressure and the flux variable as velocity.

MFMFE methods can be viewed as variational counterpart of the multipoint flux approximation (MPFA) methods
[1, 2, 3, 4]. In the MPFA finite volume framework, sub-edge (sub-face) fluxes are introduced, which allows for
localization of velocity interactions around mesh vertices. Therefore fluxes can be easily eliminated, resulting in a

∗Corresponding author
Email addresses: mfw@ices.utexas.edu (Mary F. Wheeler), gxue@ices.utexas.edu (Guangri Xue), yotov@math.pitt.edu (Ivan

Yotov)
1partially supported by the NSF-CDI under contract number DMS 0835745, the DOE grant DE-FG02-04ER25617, and the Center for Frontiers

of Subsurface Energy Security under Contract No. DE-SC0001114.
2supported by Award No. KUS-F1-032-04, made by King Abdullah University of Science and Technology (KAUST).
3partially supported by the DOE grant DE-FG02-04ER25618, the NSF grant DMS 0813901, and the J. Tinsley Oden Faculty Fellowship, ICES,

The University of Texas at Austin.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Mary F. Wheeler et al. / Procedia Computer Science 4 (2011) 918–927 919

cell-centered pressure scheme. Similar elimination is achieved in the MFMFE variational framework, by employing
appropriate finite element spaces and special quadrature rules. Our approach is based on the BDM1 [5] on triangles
and quadrilaterals, the BDDF1 [6] on tetrahedra or hexahedra, or the CD1 [7] spaces on triangular prisms with a
trapezoidal quadrature rule applied on the reference element. Related approaches have been developed in [8] on
simplicial grids and in [9, 10] on quadrilateral grids using a broken Raviart-Thomas space. A key element of our
methods is that the velocity space has n normal degrees of freedom on each edge (face), where n is the number of
vertices of the edge (face). In the case of a reference element with some square faces, the original BDDF1 (cube) and
CD1 (triangular prism) have only three degrees of freedom per face, which is insufficient for local flux elimination.
We enhance the spaces by adding an appropriate number of curl basis functions, so that the resulting spaces have four
degrees of freedom on square faces.

Due to their variational formulation, the MFMFE methods allow for multiscale and multiphysics extensions such
as the mortar mixed finite element methods [11, 12, 13] and the enhanced velocity method [14]. These methods can
handle non-matching grids and allow for coupling of different numerical algorithms and different physics in adjacent
subdomains. The multiblock variational framework is useful in designing optimal parallel solvers that utilize efficient
interface multiscale bases as interface preconditioners and subdomain solvers such as algebraic multigrid. These
approaches have also been shown to be convergent and efficient when applying stochastic methods for uncertainty
analyses [15, 16] and applying the MFMFE methods for multiscale modeling of nonlinear flow problems in porous
media [17].

The remainder of the paper is organized as follows. The MFMFE methods on various grids are defined in Section
2. Theoretical convergence results are presented in Section 3. Numerical results confirming the theory are discussed
in Section 4. Conclusions are given in Section 5.

2. Formulation of multipoint flux mixed finite element methods

Consider a boundary value problem on a domain Ω ⊂ R
d, d = 2, 3, with a Lipschitz continuous boundary ∂Ω,

−∇ · A∇p = f in Ω, (2.1)
p = 0 on ∂Ω, (2.2)

where p is an unknown scalar function, A is a symmetric, uniformly positive definite tensor with L∞(Ω) components,
and f is a source term. The choice of homogeneous Dirichlet boundary conditions is made for simplicity of the
presentation; other boundary conditions can also be treated. Let H(div;Ω) :=

{
v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)

}
and let

(·, ·) denote the inner product in L2(Ω). The weak mixed formulation of (2.1)-(2.2) reads: find u := −A∇p ∈ H(div;Ω)
and p ∈ L2(Ω), such that

(A−1u, v) − (p,∇ · v) = 0, ∀v ∈ H(div;Ω), (2.3)

(∇ · u,w) = ( f ,w), ∀w ∈ L2(Ω). (2.4)

MFMFE methods have been developed and analyzed in [18] on simplicial and quadrilateral grids, in [19, 20, 13]
on hexahedral grids and in [21] on triangular-prismatic grids. The method is defined as: find uh ∈ Vh and ph ∈ Wh

such that

(A−1uh, v)Q − (ph,∇ · v) = 0, ∀v ∈ Vh, (2.5)
(∇ · uh,w) = ( f ,w), ∀w ∈ Wh (2.6)

There are two key ingredients in the method. The first one is an appropriate choice of mixed finite element spaces Vh

and Wh and degrees of freedom. The second one is a specific choice of the numerical integration rules for (·, ·)Q in
(2.5). These two choices allow for flux variables associated with a vertex to be expressed by cell-centered pressures
surrounding the vertex. This results in a 9 point or 27 point pressure stencil on logically rectangular 2D or 3D grids.

The quadrature rule (2.22) can be symmetric or non-symmetric. We call the method symmetric or non-symmetric
MFMFE method depending on the choice of quadrature rule. On affine or smooth grids, both the symmetric and
non-symmetric MFMFE methods give first-order accurate velocities and pressures, as well as second order accurate
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