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a b s t r a c t

We formulate the minimum spanning tree problem with resource allocation (MSTRA) in two ways, as
discrete and continuous optimization problems (d-MSTRA/c-MSTRA), prove these to be N P-hard, and
present algorithms to solve these problems to optimality. We reformulate d-MSTRA as the knapsack
constrained minimum spanning tree problem, and solve this problem using a previously published branch-
and-bound algorithm. By applying a ‘peg test’, the size of d-MSTRA is (significantly) reduced. To solve
c-MSTRA, we introduce the concept of f -fractionalsolution, and prove that an optimal solution can be
found within this class of solutions. Based on this fact, as well as conditions for ‘pruning’ subproblems,
we develop an enumerative algorithm to solve c-MSTRA to optimality.We implement these algorithms in
ANSI C programming language and, through extensive numerical tests, evaluate the performance of the
developed codes on various types of instances.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerous applications have been published on the minimum
spanning tree problem (MST) [1,2] on an undirected graph [3],
where each edge is associated with a non-negative distance. Here,
‘distance’ may be cost, time, toll or penalty of each edge in specific
applications. In this article we are concerned with a variation of
this problem, where each edge may have different ‘modes’ asso-
ciated with different pair of distance and ‘cost’. Or, we may have
edges which can be ‘strengthened’ by increasing the amount of re-
sources added to these edges. For example, in a city transportation
network, we may take a bus or a train to go from one train station
to the other, eachwith respective fare and traveling time. Or, while
driving a car we may put more fuel to run faster. We formulate
such a combination of the MST and the resource allocation problem
(RA) [4] as discrete/continuous combinatorial optimization prob-
lems, prove these to be NP-hard, develop both of approximate and
exact algorithms to solve these problems, and conduct a series of
numerical experiments to evaluate the performance of the devel-
oped algorithms.

To describe the problem, let G = (V , E) be a connected
undirected graph, where V is a finite set of vertices and E ⊆ V × V
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is the set of edges. By n andmwe denote the numbers of nodes and
edges, i.e., n = |V | and m = |E|. Associated with each edge e ∈ E
is a cost function ce(·), which relates re, the amount of resource
allocated to e, to the cost of this edge. Given a fixed amount R of
total resources, our problem is to find a spanning tree of G and a
resource allocation on that tree, such that the total cost incurred
is minimized over all possible solutions. We formulate this as a
discrete, as well as a continuous, optimization problem.

In discrete optimization framework, edges can be either one
of ‘normal’ or ‘priority’ modes, and the resource requirement and
cost of each edge take different values depending on the mode of
that edge. If edge e is in normal mode, the amount of resource
required is r0e , with the corresponding cost c0e , while in priority
mode these are r1e and c1e , respectively. These are related through a
binary function c(·) as

c0e = ce(r0e ), c1e = ce(r1e ) (1)
and, we assume

c0e ≥ c1e , r0e ≤ r1e , ∀e ∈ E. (2)
That is, in priority mode cost is smaller than in normal mode with
an expense of increased resource allocation at that edge.

Let T denote the set of all the spanning trees in G, and by T ∈ T
we mean a spanning tree as well as the set of edges constituting
T . Resource allocation over T is represented by a binary vector
r = (re)e∈T with re ∈ {r0e , r

1
e }, ∀e ∈ T . Then the problem

is formulated as the following ‘discrete’ minimum spanning tree
problem with resource allocation

http://dx.doi.org/10.1016/j.orp.2015.12.001
2214-7160/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).

http://dx.doi.org/10.1016/j.orp.2015.12.001
http://www.elsevier.com/locate/orp
http://www.elsevier.com/locate/orp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2015.12.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:seiji@nda.ac.jp
mailto:yamada.144b@gmail.com
http://dx.doi.org/10.1016/j.orp.2015.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 S. Kataoka, T. Yamada / Operations Research Perspectives 3 (2016) 5–13

Fig. 1. Graph G = (V , E) for the proof of N P -hardness of c-MSTRA.

d-MSTRA:

minimize z(T , r) :=

e∈T

ce(re) (3)

subject to

e∈T

re ≤ R, (4)

re ∈ {r0e , r
1
e }, ∀e ∈ T , (5)

T ∈ T . (6)

Alternatively, the problem may be formulated as a continuous
optimization problem. Here, the cost ce of edge e ∈ E is a non-
increasing function of re defined on the continuous interval [r0e , r

1
e ]

as ce = ce(re). Specifically, we assume this to be linear

ce(re) := se − θere, (7)

and put c0e := ce(r0e ) and c1e := ce(r1e ) for simplicity. From (2), we
have θe ≥ 0. Thus, the ‘continuous’minimum spanning tree problem
with resource allocation is as follows.

c-MSTRA:

minimize z(T , r) =

e∈T

ce(re) (8)

subject to

e∈T

re ≤ R, (9)

r0e ≤ re ≤ r1e , ∀e ∈ T , (10)

T ∈ T . (11)

To proveN P -hardness of these problems, we first note that the
standard 0–1 knapsack problem

KP:

maximize
n

j=1

pjxj

subject to
n

j=1

wjxj ≤ R, ∀xj ∈ {0, 1},

is N P -hard.

Theorem 1. d-MSTRA and c-MSTRA are both N P -hard.

Proof (N P -Hardness of d-MSTRA). Corresponding to the knapsack
problem let G = (V , E) be with V = {v0, v1, . . . , vn} and E =
{(v0, v1), . . . , (vn−1, vn)}. For each edge e = (vj−1, vj) ∈ E we set
r0e = 0, c0e = pj, and r1e = wj, c1e = 0. Then, d-MSTRA is identical
to KP, and thus N P -hard.

(N P -hardness of c-MSTRA) Given the knapsack problem
above, let G = (V , E) be a graph with V = {v0, v1, . . . , vn, t}
and E = {e1, e′1, e2, e

′

2, . . . , en, e
′
n, f }. Here, ej and e′j both connect

vj−1 and vj, and f = (vn, t) (see Fig. 1). The resource and cost
are r0(ej) = r1(ej) = wj and c0(ej) = c1(ej) = M − pj for ej,
r0(e′j) = r1(e′j) = 0 and c0(e′j) = c1(e′j) = M for e′j , and r0f = 0,
r1f = R, c0f = c1f = 0 for f , where M is a constant satisfying
M > max1≤j≤n pj. For a solution (T , r) of c-MSTRA on this graph,
we introduce a 0–1 variable xj such that xj = 1 if ej ∈ T and xj = 0

otherwise (j = 1, 2, . . . , n). Note that xj = 0 implies e′j ∈ T . Then,
this particular c-MSTRA can be rewritten as

minimize
n

j=1

(M − pj)xj

subject to
n

j=1

wjxj ≤ R, ∀xj ∈ {0, 1}.

This is equivalent to KP, and thus c-MSTRA is N P -hard. �

The problems formulated above may be regarded as a sort of
trade-off analysis of spanning trees with respect to two criteria,
the amount of resource consumed r(T ) =


e∈T re and the cost

c(T ) =


e∈T ce of the tree, provided that re and ce are a priori
given constants. Hassin and Levin [5] gave a polynomial time
approximation scheme, and Yamada et al. [6] gave a branch-and-
bound algorithm for such a problem. Trade-off analysis in general
is quite standard in scheduling [7–9] and resource allocation [4]
problems. If r(T ) is regarded as a second objective function, rather
than a constraint, we have a multi-objective minimum spanning
tree problem [10,11]. An important feature that distinguishes d-
and c-MSTRAs from the previous researches is the fact that the
coefficient ce is a function of re, thus it can be enhanced by
allocating larger amount of resources. To our knowledge, trade-off
analysis in this framework is new in this paper.

In Section 2, we discuss d-MSTRA: how this can be reduced
to the knapsack constrained minimum spanning tree problem
(KCMST [6], see also [12]), and how computation can be speeded
up by reducing the size of the problem. Sections 3 and 4 explore
c-MSTRA and develop solution algorithm to solve this problem to
optimality. Finally, in Section 5 a series of numerical experiments
are done, both for d- and c-MSTRAs, to examine the behavior of
the developed algorithms. Throughout theoretical development
in these sections, KCMST plays a key role. Thus, KCMST and
its solution algorithm are briefly reviewed in the Appendix for
readers’ convenience.

2. Solution algorithm for d-MSTRA with problem reduction

In this section we show that d-MSTRA can be reformulated as
a KCMST on a ‘doubly edged graph’. Furthermore, by applying the
‘peg test’ the problem is substantially reduced in size. The reduced
problem can be solved by SOLVE_KCMST routine [6] much faster
than solving the unreduced problem directly.

2.1. d-MSTRA as KCMST

We introduce Ḡ = (V̄ , Ē) as the graph which is obtained
from G by doubling each edge e ∈ E into edges e0 and e1 ∈ Ē,
corresponding to normal and priority modes, respectively. Thus,
these edges are incident to the identical pair of nodes as e ∈ E,
and the resource allocation and cost at e0 (e1, resp.) are r0e and c0e
(r1e and c1e , resp.). We have V̄ = V and |Ē| = 2 m. These graphs
are illustrated in Fig. 2 for a planar example. Here we employ
the following simplified notation for edges and trees in graph Ḡ.
Superscripts in the edges of Ē are usually omitted, unless otherwise
needed. Therefore, by e ∈ E we mean either e0 or e1, and ce may
refer to either c0e or c1e . T denotes the set of all the spanning trees
in Ḡ. Thus, d-MSTRA can be rewritten as the following
KCMST:

minimize z(T ) :=

e∈T

ce (12)

subject to

e∈T

re ≤ R, (13)

T ∈ T . (14)
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