
 Procedia Computer Science 48 (2015) 256 – 262

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of International Conference on Computer, Communication and Convergence (ICCC 2015)
doi: 10.1016/j.procs.2015.04.179

ScienceDirect
Available online at www.sciencedirect.com

International Conference on Intelligent Computing, Communication & Convergence

 (ICCC-2014)

Conference Organized by Interscience Institute of Management and Technology,

Bhubaneswar, Odisha, India

Architecture Based Materialized View Evolution: A Review

Anjana Gosaina, Sangeeta Sabharwalb, Rolly Guptac*
aProfessor, USICT,Guru Gobind Singh Indraprastha University, Delhi, India

bProfessor, NSIT, Delhi University, Delhi, India
cResearch Scholar, NSIT, Delhi University, Delhi, India

Abstract

Data Warehouse evolution is a critical problem in present scenario due to perpetual transactions and change in their structure
arising out of continual evolving users' requirements. Handling properly all type of changes is a crucial process as it forms the
core component of the modern DSS. Therefore DW has to be updated periodically according to different type of evolution of
information sources. The problem of evolving an appropriate set of views is subjected to as the materialized view evolution
problem. Many different materialized view evolution methods have been proposed in the literature to address this issue. This
paper provides a survey of materialized view evolution methods. The paper aims at studying the materialized view evolution in
relational databases and data warehouses as well as in a distributed setting. It defines an evolutionary approach for highlighting
the materialized view evolution problem by identifying the three main dimensions that are the basis in the classification of
materialized view evolution methods namely; (i) Framework, (ii) Architecture and (iii) Model/Design Model. This study reviews
architecture based materialized view evolution methods, by identifying respective potentials and limits.

Keywords: Architecture ; View Maintenanc;, Materialized view evolution

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of International Conference on Computer, Communication
and Convergence (ICCC 2015)

(ICCC-2015)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.04.179&domain=pdf

257 Anjana Gosain et al. / Procedia Computer Science 48 (2015) 256 – 262

* Corresponding author. Tel.: 0-98-99-148-597
E-mail address:rollygupta02@gmail.com

1. Introduction

Materialized views act as a data cache that gather information from distributed databases and support faster and
reliable availability of already computed intermediate result sets (i.e. responses to queries). Evolution in data
warehouse may be generated by change in schema, changes in software and the change in data warehouse
requirements. Materialized view evolution approach focuses on choosing materialized views in the design process
of data warehouses or maintaining a materialized view in response to data changes or to data sources changes and
sometimes to monitor the DW quality under schema evolution. Whenever the underlying base relation is modified
the corresponding materialized view also evolves in reaction to those changes so that it can present quality data at
the view level.

The materialized view evolution issue has been investigated in several contexts: query optimization, warehouse

design, data placement in a distributed setting, web databases, etc. Many diverse solutions to the materialized view
evolution problem have been proposed and analyzed through surveys [Dhote et. al. 2009, Halevy 2001, Labrinidis et.
al 2009]. However, none of the above mentioned surveys provides a classification of materialized view evolution
approaches in order to identify their advantages and disadvantages. Our survey fills this gap.

 The goal of the materialized view evolution is to simplify the design, implementation, maintenance and

management of data warehousing approaches. Therefore, we classified the materialized view evolution into
following dimensions -- Framework, Architecture and Model/Design Model. Based on the methods involved in
evolution of materialized views in a data warehousing dimensions, they can be categorized further. So, the
taxonomy used for further classification is – View Evolution, Basic View Maintenance, Incremental VM, Self
Maintainable Maintenance, Not self Maintainable Maintenance, View selection, View Synchronization, View
Adaptation. We present a comparative study of the various research works explored in context of architecture based
dimensions and methods. The rest of the paper is organized as follows: Section 2 presents a comparative study of the
various research works explored. Section 3 presents the reviews and result. Finally section 4 contains the conclusion
and discusses open issues.

2. Comparative Study

 We have analyzed architecture based materialized view evolution methods on several parameters and presented
their comparative results in the table below:

TABLE1: COMPARISON OF ARCHITECTURE BASED MVE METHODS

S.
No

Authors

Tech
nique
s
/Cate
gory
Adap
ted

Issues
Addresse
d/
Changes
Handled

Architec
ture
support/
perspect
ive

Metho
d’s
Activiti
es/
Goals

Address
ed
attribute
s

Appli
cable
frame
work
stage

Advanta
ges

Disadva
ntages

Types
of
Queri
es/
Opera
tion

Tool
Supp
ort/
Impl
emen
tatio
n

1. Sumi Helal, et
al.

IVM manual and
automatic
hoarding

3-Tier
Architectur
e

flexible
synchroni
zation

accessibility
,
availability,
and
consistency

VM Ubiquitous
data access

fierce
competitio
n
addressing

RM Coda-
based

2. Janet L.
Wiener, et.al.

VM autonomous
sources +

WHIP
prototype

Distribute
d

scalability
Modularity,

VM Modular
and scalable

Issues of
crash

RM C++
and C

Download	English	Version:

https://daneshyari.com/en/article/489962

Download	Persian	Version:

https://daneshyari.com/article/489962

Daneshyari.com

https://daneshyari.com/en/article/489962
https://daneshyari.com/article/489962
https://daneshyari.com/

