
 Procedia Computer Science 18 (2013) 70 – 79

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.170

International Conference on Computational Science, ICCS 2013

n-step FM-Index for faster pattern matching

Alejandro Chacón∗, Juan Carlos Moure, Antonio Espinosa, Porfidio Hernández

Computer Architecture and Operating Systems Department, Escola d’Enginyeria, Universitat Autònoma de Barcelona Campus UAB,

Bellaterra 08193, Spain

Abstract

Fast pattern matching is a requirement for many problems, specially for bioinformatics sequence analysis like short read

mapping applications. This work presents a variation of the FM-index method, denoted n-step FM-index, that is applied in

exact match genome search.

We propose an alternative two-dimensional FM-index structure that allows backward-search navigation giving steps of n
symbols at a time. The main advantages of this arrangement are the reduction of the computational work, but most importantly,

the reduction by n of the chain of dependent data accesses, and the increase in the temporal locality of the data access pattern.

This benefit comes at the expense of increasing the total amount of data required for the index.

We present an in-depth performance analysis of a multi-core implementation of the algorithm using large references (up

to 1.5G). We identify memory latency as the major performance limiter for single-thread execution and memory bandwidth

for multi-thread execution. Our proposal provides speedups ranging from 1.4× to 2.4×, when there is no limitation on DRAM

capacity.

We also analyse the trade-off of compacting the proposed data structure in order to reduce memory capacity requirements,

now at the expense of increasing execution time. An extra 33% of DRAM space allows our proposal to improve performance

by 1.2×, while doubling DRAM size enables an additional 1.5×.

Our proposal of n-step algorithm provides an alternative for pseudo-random memory access algorithms to be redesigned

to scale in current and future computer systems.

Keywords: Pattern Matching; FM-index; Parallel Algorithms; Performance Analysis; Multicore Processors;

1. Introduction

Next-generation DNA sequencing technologies produce over 600 gigabases of DNA sequencing reads from

a single instrument run. Sequence alignment is required for downstream data analysis. Resequencing projects

need to align (most commonly known as mapping) a long list of short sequencing reads to a reference genome,

usually with a low number of differences from this reference. For the case of de novo sequence assembly, reads

must be aligned to other reads in order to recreate a genome. This large amount of data to process demands fast

and efficient pattern matching algorithms. Recent sequence alignment software tools, like Bowtie[1], SOAP[2],

BWA[3], and GEM[4], use a relatively new suffix tree-based algorithm based on the Burrows-Wheeler Transform

(BWT)[5] that is called FM-index[6].

∗Corresponding author. Tel.: +34-93-581-1990 ; fax: +34-93-581-2478.

E-mail address: {alejandro.chacon, juancarlos.moure, antonio.espinosa, porfidio.hernandez}@uab.es.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

71 Alejandro Chacón et al. / Procedia Computer Science 18 (2013) 70 – 79

FM-index implements a backward search mechanism on top of BWT, which allows finding exact pattern

matches in a number of steps that is linear with the length of the searched pattern, and independent from the size

of the reference sequence. In addition to its good computational complexity, it achieves high compression ratios,

allowing to index the full human genome into less than 1.5 GB of memory space.

Improving execution throughput on current computer systems, composed of multiple sockets of multicore

CPUs and a hierarchical memory architecture, relies on finding parallelism in the application algorithm and per-

forming data accesses with high reference locality. Temporal locality in the data access stream is exploited to

reduce access latency and save both memory bandwidth and energy consumption. Spatial locality is used to amor-

tize costly data accesses to DRAM in the form of read and write bursts. Finally, memory-level parallelism helps

tolerating high memory access latencies.

Sequence alignment algorithms usually offer plenty of thread and memory-level parallelism, easily obtained

by performing multiple simultaneous pattern searches (one for each short read sequence) on the same reference

sequence. This parallelism allows exploting all the execution cores in the system and can be combined with

multithreading and prefetching techniques to better exploit the available memory bandwidth. The FM-index search

algorithm, though, lacks both temporal and spatial data access locality. Its good properties of high compression

and fast operation are at the cost of a pseudo-random data access pattern. This lack of locality creates severe

difficulties to make an efficient usage of the memory hierarchy, then limiting its potential scalability.

In order to improve the search scalability, we propose a generalization of the FM-index search algorithm,

called n-step FM-index. It basically divides the number of search steps by n, at the expense of increasing the total

amount of data required for the index. Each search step is computationally more complex and the whole amount

of data read on each search operation is barely reduced, but the spatial locality of memory accesses is improved,

and this also improves performance.

Our main contributions can be summarized as follows:

• We introduce an algorithmic variation of the FM-index search that reduces the number of search steps in

order to improve execution time, at the expense of increasing the size of the BWT data structure.

• We present an in-depth analysis of performance of a multi-core implementation of the algorithm using large

indexes (up to 1.5 G). Speedups from 1.4× to 2.4× are reached. We identify memory latency and memory

bandwidth as the major performance limiters.

• We analyse the trade-off of compacting the BWT data structure to reduce memory capacity requirements at

the expense of increasing execution time. An extra 33% of DRAM space allows our proposal to improve

performance by 1.2×, while doubling DRAM size enables an additional 1.5×.

In section 2 we are going to describe the FM-index structure and operation. Section 3 introduces our proposal

of increasing data locality by n-step FM-index search. In section 4, we provide experimentation results for the ex-

ecution of the proposal on a multicore system. Section 5 discusses related work and, finally, section 6 summarizes

results obtained and future work.

2. Background: single-step Ferragina-Manzini Index (FM-Index)

Indexing a reference sequence or string is a method to accelerate pattern search. The time spent on creating

the index is amortized when a large enough number of searches is presented. Total memory capacity requirements

to store this index must also be considered. As mentioned above, FM-index is the preferred indexing method used

in most sequence alignment software tools. Next, we introduce the fundamental concepts behind the FM-index

structure and operation.

2.1. Notation and basic concepts

Let S = S [0]S [1] · · · S [|S |−1] be a sequence or string over an alphabet Σ, where S [i] is the ith symbol of the string.

S i, j = S [i]S [i+1] · · · S [j] is a substring of S . S i = S [i]S [i+1] · · · S [|S |−1] denotes a suffix of S starting at position i.
Representing DNA only requires the symbols {A,C,G,T}. We use R to denote the reference sequence and Q to

denote a query sequence. We suppose that the length of R (|R|) is much higher than the length of Q (|Q|). The

exact matching problem consists of finding all the occurrences of Q into R, i.e., the position of the substrings of R
that are equal to Q.

Download English Version:

https://daneshyari.com/en/article/490480

Download Persian Version:

https://daneshyari.com/article/490480

Daneshyari.com

https://daneshyari.com/en/article/490480
https://daneshyari.com/article/490480
https://daneshyari.com

