
 Procedia Computer Science 18 (2013) 110 – 119

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.174

International Conference on Computational Science, ICCS 2013

Empirical Modelling of Linear Algebra Shared-Memory Routines

Jesús Cámaraa, Javier Cuencab, Luis-Pedro Garcı́ac,∗, Domingo Giméneza

aDepartamento de Informática y Sistemas, University of Murcia, Murcia 30071, Spain
bDepartamento de Ingenierı́a y Tecnologı́a de Computadores, University of Murcia, Murcia 30071, Spain

cServicio de Apoyo a la Investigación Tecnológica, Polytechnic University of Cartagena, Cartagena 30202, Spain

Abstract

In this work the behavior of the multithreaded implementation of some LAPACK routines on PLASMA and Intel MKL

is analyzed. The main goal is to develop a methodology for the installation and modelling of shared-memory linear algebra

routines so that some decisions to reduce the execution time can be taken at running time. Typical decisions are: the number of

threads to use, the block or tile size in algorithms by blocks or tiles, and the routine to use when there are several algorithms or

implementations to solve the problem available. Experiments carried out with PLASMA and Intel MKL show that decisions

can be taken automatically and satisfactory execution times are obtained.

Keywords: Performance modelling; Linear algebra; Shared-memory; PLASMA; LAPACK

1. Introduction

Multicore processors and cc-NUMA systems can offer performance improvements, but often demanding new

programming methods and algorithms to utilize efficiently the complex architecture involved. In dense linear

algebra software, PLASMA [1] and FLAME [2] are examples of libraries that have been designed to achieve high

performance on multicore architectures. Software optimization techniques are necessary to obtain low execution

times and benefit fully from the potential of the hardware. Decisions are taken at running time as a result of the

work performed at installation time, by modelling the execution time of the routines or by applying some empirical

approach to study the behavior of the routines. There have been studies on automatically tuning libraries. PHiPAC

[3] and ATLAS [4] tune matrix multiplication codes automatically on a large range of CPU platforms. FFTW

[5] is a self-tuning library designed to generate high performance code for discrete Fourier transform. OSKI [6]

combines install-time evaluations with run-time models to tune sparse-matrix vector multiplication. SPIRAL [7]

is a high-performance code generation system for digital signal processing transforms. ABCLib DRSSED [8]

is a parallel eigensolver with an auto-tuning facility. Depending on the type of the computational system used,

the decisions to take may differ. For instance: selecting the appropriate number of threads to use at each level

of parallelism, how to assign processes to processors or select the correct combination of algorithmic parameters

(block size in algorithms by blocks, tile size in algorithms by tiles, etc.).

In [9], auto-tuning is carried out by applying installation techniques to a multithread version of the BLAS-3

matrix multiplication routine (dgemm), which constitutes the basic subroutine for many other higher-level linear

∗Corresponding author.

E-mail address: luis.garcia@sait.upct.es.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

111 Jesús Cámara et al. / Procedia Computer Science 18 (2013) 110 – 119

algebra packages (LAPACK, ScaLAPACK, PLAPACK, HeteroScaLAPACK, etc.). Since in PLASMA parallelism

is not hidden inside Basic Linear Algebra Subprograms (BLAS) [10], in our paper previous ideas for installing

multithreaded basic linear algebra routines are extended to higher-level routines. We propose a new empirical

modelling method, and the results obtained when applying our auto-tuning methodology to PLASMA are com-

pared with the highly tuned implementations supplied by vendors such as Intel MKL [11].

The rest of the paper is organized as follows. Section 2 presents the auto-tuning methodology for linear

algebra routines in shared-memory systems and describes the empirical modelling method proposed. This method

obtains a theoretical model of the execution time with experimental estimation of coefficients. The application

of empirical modelling to PLASMA routines is described in section 3. In section 4 we evaluate our auto-tuning

methodology experimentally in different kinds of shared-memory systems. Finally, in section 5 the conclusions

are summarized and some possible extensions of the work are considered.

2. The auto-tuning methodology

In this section we describe our auto-tuning methodology for linear algebra routines. To improve the scalability

of shared-memory linear algebra routines, the auto-tuning methodology explained in [9] for the gemm routine can

be extended to higher-level routines. The goal of this methodology is to find the most appropriate number of

threads to use, together with the values of other algorithmic parameters. The methodology is divided in three

phases:

• When a new routine is designed, or its code is known, a model of the execution time can be developed,

which is used in the subsequent phases; in other cases, the model is empirically estimated. This approach is

used here to auto-tune PLASMA routines. Auto-tuning of linear algebra routines in large cc-NUMA based

on theoretical models is analyzed in [12] and can be combined with the empirical approach studied here.

• When a model is not available, some experiments are conducted in the installation of the routine, to analyze

the behavior of the routine in the system for some significant values (Installation Set). For example, exper-

iments are conducted for different problem sizes, numbers of threads, and block sizes in routines working

by blocks. In large NUMA systems, there is a shared RAM memory space but with non uniform data access

time, making it difficult to develop an accurate model. In this case, the empirical representation of the be-

haviour of the routine is not easy, and extensive experimentation may be necessary. The installation process

is performed once for a given routine on a given platform. The information generated in the installation is

stored for use when the routine is executed. This information can be included in the routine together with a

decision engine to obtain an auto-tuning version of the routine.

• When a problem is being solved, the problem size and the maximum number of cores indicated by the user

are used to decide the number of threads for the solution of the problem. In routines working by blocks the

block size should also be selected. The selection of those parameters is done in the auto-tuning routine prior

to the call to the basic routine with the values selected for the parameters. The different possible values for

the algorithm parameters are substituted in the empirically estimated model, and those values which provide

the lowest theoretical execution time are used in the solution of the problem.

So, an empirically estimated model of the execution time can be used to determine the most appropriate values

for the algorithm parameters (number of threads, block sizes, etc.) as well as the routine to use if several are

available for the problem in question. The sequential execution time of all the routines considered has a cost

of order O(n3), with n being the size of the matrix, and so in the theoretical model there will be terms in n3,

n2 and n. For the parallel version where the number of threads (t) is the only algorithm parameter, the highest

cost (n3) should be divided by t, and other terms should be multiplied by t. Thus, we could consider all possible

combinations {n3, n2, n, 1} × {t, 1, 1
t }, but for n3 we consider only n3

t , and the lowest order terms (n
t , t, 1 and 1

t) are

not included in the model. The execution time is modelled by:

T (n, t) = k1

n3

t
+ k2n2t + k3n2 + k4

n2

t
+ k5nt + k6n (1)

Download English Version:

https://daneshyari.com/en/article/490484

Download Persian Version:

https://daneshyari.com/article/490484

Daneshyari.com

https://daneshyari.com/en/article/490484
https://daneshyari.com/article/490484
https://daneshyari.com

