
 Procedia Computer Science 18 (2013) 250 – 259

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.188

International Conference on Computational Science, ICCS 2013

An Empirical Evaluation of the Cost and Effectiveness of
Structural Testing Criteria for Concurrent Programs

Maria A. S. Britoa, Simone R. S. Souzaa, Paulo S. L. Souzaa,∗

aUniversidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, ICMC/USP, P.O. 668, São Carlos (SP), Brazil, 13560-970

Abstract

Concurrent program testing is not a trivial task. Features like nondeterminism, communication and synchronization impose

new challenges that must be considered during the testing activity. Some initiatives have proposed testing approaches for

concurrent programs, in which different paradigms and programming languages are considered. However, in general, these

contributions do not present a well-formed experimental study to validate their ideas. The problem is that the data used and

generated during the validation is not always available, hampering the replication of studies in the context of other testing

approaches. This paper presents an experimental study, taking into account the concepts of the Experimental Software En-

gineering to evaluate the cost, effectiveness and strength of the structural testing criteria for message-passing programs. The

evaluation was conducted considering a benchmark composed of eight MPI programs. A set of eight structural testing criteria

defined for message-passing programs was evaluated with the ValiMPI testing tool, which provides the support required to

apply the investigated testing criteria. The results indicate the complementary aspect of the criteria and the information about

cost and effectiveness has contributed to the establishment of an incremental testing strategy to apply the criteria. All material

generated during the experimental study is available for further comparisons.

Keywords: Software testing; Concurrent programs; MPI programs; Experimental study

1. Introduction

The demand for distributed and parallel applications has been growing due to the advanced hardware tech-

nology, which provides more efficient machines and allows to process large volumes of data. However, these

applications are inevitably more complex than sequential ones. Every concurrent software contains features, such

as nondeterminism, synchronization and inter-process communication, which significantly hamper their valida-

tion and their testing. Approaches to test concurrent programs efficiently and effectively have been proposed and

are an important factor for the success and quality of the programs built in this domain.

Several studies have been conducted to define approaches to test concurrent programs [1, 2, 3, 4, 5]. In

general, these studies present some evaluation to demonstrate the applicability of their contribution. The problem

is that the data used is not always available, hampering the replication of the studies and the fair comparison among

different testing techniques for concurrent programs. In the context of sequential program testing, Weyuker [6]

pointed out the importance of comparative studies to evaluate different testing techniques, allowing the replication

∗Corresponding author. Tel.: +55-16-3373-9700 ; fax: +55-16-3373-9700

E-mail address: masbrit@icmc.usp.br; srocio@icmc.usp.br; pssouza@icmc.usp.br.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

251 Maria A.S. Brito et al. / Procedia Computer Science 18 (2013) 250 – 259

of the experimental studies. Thus, demonstrating the applicability and effectiveness of testing techniques is as

important as proposing testing techniques for new application domain.

The empirical evaluation of techniques, criteria and testing tools has been intensified in recent years, mainly

in the context of traditional programs. These empirical evaluations, in general, consider three basic factors for a

comparison: cost, effectiveness and strength [7]. Cost refers to the effort required to satisfy a testing criterion and

can be measured by the number of test cases necessary to cover it. Effectiveness refers to the ability of a test set

to reveal defects. Strength refers to the probability to satisfy a testing criterion using a test set adequate to another

testing criterion. These comparison factors are important for the proposition of an efficient testing strategy taking

into account the benefits of each testing criterion.

This paper has contributed in this direction, presenting an experimental study that evaluates structural testing

criteria defined for message-passing programs, analyzing their cost, effectiveness and strength. Experimental

study takes into account the process defined by Wholin [8], which includes activities for the definition, planning,

conduction, analysis and packing of experimental studies. A benchmark composed of eight MPI (Message Passing

Interface) programs is defined and used in our study. MPI is a message-passing library interface specification for

the development of portable message-passing concurrent programs using sequential languages, such as C and

Fortran [9]. Our work considers MPI programs written in C language.

The analyzed testing criteria were proposed by Souza et al. [10] and include structural criteria to test concurrent

and sequential aspects of message-passing programs. Information about control, data and communication flows

is extracted from a program under test and used to guide the generation of a test case set. Eight different testing

criteria were analyzed using the ValiMPI support tool [11]. This tool provides the required resources to apply test

cases and evaluate their coverage in programs considering the structural testing criteria for MPI programs.

The material generated during the experimental study, including programs, results of testing activity, ValiMPI

tool and results of experimental study has been organized and is available for public access, providing relevant

information to further studies and comparisons. According to our knowledge, it is the first study which uses

concepts of the Experimental Software Engineering for the definition, conduction and analysis of the testing

criteria in the context of concurrent programs.

The remaining of the paper is organized as follows: Section 2 presents the test model and the structural testing

criteria for message-passing programs, as well as the ValiMPI testing tool. Section 3 describes the experimental

study, including the definition, planning, results and analysis. Section 4 reports the related works and Section 5

presents the final considerations and future research directions.

2. Structural Testing Criteria for Message-Passing Programs

In message-passing programs, communication is made by send and receive basic primitives, in which a process

can send a message to another process or to a group of processes. The first one is called point-to-point commu-

nication and the second is called collective communication. In both cases, the test activity must establish an

association between the variables sent and the location where these variables are used in the receiver process(es).

Besides, it is important to define a strategy to derive all possible synchronizations among the processes of the

concurrent software processes. Executing these distinct synchronizations allows the verification of different pairs

of definition and use of variables in different processes. Associated to these synchronizations there are important

questions that must be considered, such as non-determinism, controlled execution and race conditions.

Souza et al. [10] defined a test model and a set of structural testing criteria that represent the main features of

message-passing programs, including control, data and communication aspects. The test model considers that a

concurrent program is a set Prog = p0, p1, ..., pn−1 composed of its n parallel processes. A Control Flow Graph

(CFG) of each process p is generated using the same concepts of sequential programs. Each CFGp represents the

control flow of a process p. A Parallel Control Flow Graph (PCFG) generated for Prog is composed of CFGp (to

p = 0 ... n − 1) and edges of communication among processes. N represents the set of nodes and E represents the

set of edges in PCFG. E has two subsets: Ep, which are edges of a same process and Es, composed of edges that

represent the communication between processes, called interprocess edges. A node i in a process p is represented

by notation np
i . Two subsets of N are defined: Ns, which are the nodes composed of primitives send and Nr, which

are nodes composed of primitives receive. A set Rp
i is associated with each np

i ∈ Ns containing possible nodes that

can receive the message sent by node np
i . This set is important to establish all possible communication pairs.

Download English Version:

https://daneshyari.com/en/article/490498

Download Persian Version:

https://daneshyari.com/article/490498

Daneshyari.com

https://daneshyari.com/en/article/490498
https://daneshyari.com/article/490498
https://daneshyari.com

