
 Procedia Computer Science 18 (2013) 309 – 318

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.194

International Conference on Computational Science, ICCS 2013

Regularity versus Load-Balancing on GPU for treefix
computations

David Defoura, Manuel Marina

aUniv. Perpignan Via Domitia, DALI F-66860, Perpignan, France
Univ. Montpellier II, LIRMM, UMR 5506, F-34095, Montpellier, France

CNRS, LIRMM, UMR 5506, F-34095, Montpellier, France

Abstract
The use of GPUs has enabled us to achieve substantial acceleration in highly regular data parallel applications. The trend is

now to look at irregular applications, as it requires advanced load balancing technics. However, it is well known that the use of

regular computation is preferable and more suitable when working with these architectures. An alternative to the use of load

balancing is to rely on scan and other GPU friendly parallel primitives to build the desired result; however implying in return,

the involvement of extra memory storage and computation.

This article discusses of both solutions for treefix operations, which consist of applying a certain operation while perform-

ing a tree traversal. They can be performed by traversing the tree from top to bottom or from bottom to top, applying the

proper operation at each vertex. It can be accelerated using either load balancing which maintains a pool of tasks while per-

forming only the necessary amount of computation or using a vector friendly representation that will involve twice the amount

of computation than the first solution. We will explore these two approaches and compare them in terms of performance and

accuracy. We will show that the vectorial approach is always faster for any category of trees, but it raises accuracy issues when

working with floating-point data.

Keywords: GPU computing ; regular versus irregular algorithms ; numerical quality ;

1. Introduction

In recent years, processors such as IBM cell SPUs, FPGAs, GPUs, and ASICs were successfully considered

to provide speedup on numerous classes of applications. Of these, GPUs stand out as they are produced as

commodity processors and exhibiting a number of processing cores doubling every year, revealing the current

architectural trend. GPUs were used to improve the performance of regular computations such as those described

in [1]. On such highly regular computations, GPUs can outperform a single core CPU by a large factor on average,

that could be higher than 400 in some cases [2]. These large speedups are only possible for highly regular and

computationally intensive classes of application. More recently, irregular computations on graphs such as list

ranking [3] and connected components [4] were also considered. However, in these cases, the observed speedup

compared to single core performance is of the order of 5 or less.

Treefix operations were first introduced by Leiserson and Maggs [5] as intermediate steps in a number of

higher-level graph analysis algorithms. They defined two basic operations, Rootfix and Leaffix. Rootfix returns to

∗Corresponding author. Tel.: +33-4-30-19-23-06 ; fax: +33-4-68-66-22-87.

E-mail address: david.defour@univ-perp.fr.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

310 David Defour and Manuel Marin / Procedia Computer Science 18 (2013) 309 – 318

each vertex of the tree the result of applying a certain operation over all its ancestors; Leaffix returns to each vertex

the result of applying an operation over all its descendants. Rootfix and Leaffix have application for example in

the Backward-forward sweep algorithm for electrical network analysis [6] or to evaluate the parsimony score of

phylogenetic trees [7, 8]. In this article, we explore the available alternatives to accelerate these computations

using GPUs.

The usual implementation of Rootfix and Leaffix is based on traversing the tree, from top to bottom or from

bottom to top. The vertices are updated as visited, allowing to effectively propagate the accumulated result of the

operation through the whole tree as the traversal progresses. The order of visit is relevant. Starting from the root,

Depth-first or Breadth-first traversals are both valid alternatives. Ultimately, Rootfix and Leaffix can be viewed as

performing a complete Breadth-first or Depth-first search over a tree, updating the vertices’ weights as they are

visited.

Successful implementations of parallel Breadth-first search over a general graph on GPU can be found in [9,

10, 11, 12, 13]. All of them rely on level-synchronization, i.e. processing every level of the graph in parallel,

in order of depth. This is often implemented as an iterative process that performs one iteration per level. Some

versions [11, 12, 13] examine every vertex of the graph at every iteration: if the predecessor was visited during

the last iteration, then the vertex is visited. These methods perform a quadratic amount of work, as the graph can

have, in the worst case, as many levels as vertices. A work efficient versions [9, 10] focus on producing, at each

iteration, a vertex or edge frontier, including only those elements to be visited or traversed during that iteration.

The main advantage of these methods is to exhibit a work efficient scheme, but have to deal with the irregularity

of the graph data structure, which involves load imbalance and potential underutilization of SIMD lanes. Different

load balancing strategies are applied to improve the performance achieved by these methods.

An alternative for performing Rootfix and Leaffix on a GPU, is to use a parallel-friendly representation of

the tree consisting of three arrays based on the Euler-tour ordering. A series of highly regular parallel operations

performed over these arrays, such as scan, allow to compute the result of Rootfix and Leaffix for a tree with n
vertices in O(lg n) parallel steps, independently of the tree topology. However this methods relies on array of size

2.n with two times more computations than load balancing implementations.

The purpose of this article is to determine the best solution between a work efficient scheme thanks to irregular

computation or a solution with regular computation with double the amount of operation to solve the treefix

problem on GPUs. It makes the following contributions in the area of parallel computing:

• Regular vs irregular algorithm comparison. We present two different approaches that make use of data-

parallelism to perform a distinctive operation over trees. One of them leads to an application that is highly

regular, the other to one that is highly irregular and compares them in terms of performance.

• Numerical quality analysis. We compare the numerical accuracy of both methods when dealing with

floating-point data as the amount and the order of operation is different.

• Rootfix and Leaffix OpenCL implementation. We provide a vectorial implementation of +Rootfix and

+Leaffix in OpenCL. Even if there has been some work on implementing Rootfix and Leaffix in different

languages [14, 15, 16], this is, to our knowledge, the first parallel implementation that could run on a GPU.

2. Presentation of Rootfix and Leaffix

Leiserson and Maggs [5] formally defined Rootfix and Leaffix as follows: given a weighted tree and a binary

operator ⊕, Rootfix assigns to each vertex the result of applying ⊕ to all of the vertex’s ancestors; Leaffix assigns

to each vertex the result of applying ⊕ to all of the vertex’s descendants.

From there, we can define the +Rootfix and +Leaffix operations, where ⊕ is the addition, as assigning to each

vertex the sum of its ancestors and the sum of its descendants, respectively. Figure 1 shows an example. In

particular, if all the vertices of the tree have weight 1, +Rootfix returns the depth of each vertex, and +Leaffix

returns the size of the sub-tree rooted on every vertex.

2.1. Parallel algorithm
Regarding the type of trees considered, there are two easy cases of parallelization: balanced binary tree and

linked list. For the balanced binary tree, Leiserson and Maggs [5] proposed a randomized algorithm that performs

Download English Version:

https://daneshyari.com/en/article/490504

Download Persian Version:

https://daneshyari.com/article/490504

Daneshyari.com

https://daneshyari.com/en/article/490504
https://daneshyari.com/article/490504
https://daneshyari.com

