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Abstract

Least Squares with QR-factorization (LSQR) method is a widely used Krylov subspace algorithm to solve sparse rectangu-

lar linear systems for tomographic problems. Traditional parallel implementations of LSQR have the potential, depending on

the non-zero structure of the matrix, to have significant communication cost. The communication cost can dramatically limit

the scalability of the algorithm at large core counts. We describe a scalable parallel LSQR algorithm that utilizes the particular

non-zero structure of matrices that occurs in tomographic problems. In particular, we specially treat the kernel component of

the matrix, which is relatively dense with a random structure, and the damping component, which is very sparse and highly

structured separately. The resulting algorithm has a scalable communication volume with a bounded number of communica-

tion neighbors regardless of core count. We present scaling studies from real seismic tomography datasets that illustrate good

scalability up to O(10, 000) cores on a Cray XT cluster.
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1. Introduction

Least Squares with QR factorization (LSQR) algorithm [1] is a member of the Conjugate Gradients (CG) fam-

ily of iterative Krylov algorithms and is typically reliable when a matrix is ill-conditioned. The LSQR algorithm,

which uses a Lanczos iteration to construct orthonormal basis vectors in both the model and data spaces, has been

shown to converge faster than other algorithms in synthetic tomographic experiments [2].

Noninvasive tomographic problems that focuses on determining characteristics of an object (its shape, inter-

nal constitution, etc.) based on observations made on the boundary of the object is an important subject in the

broad mathematical field known as inverse problems. Each observation d made on the boundary can usually

be expressed as a projection of the unknown image m(x) onto an integration kernel K(x), whose form is highly

problem-dependent. In mathematical form, this type of problems can often be expressed as
∫

K(x)m(x) dV(x).

This integration equation can be transformed to a linear algebraic equation of the unknown image by discretizing

x. The resulting inverse problem can be highly under-determined, as the number of observations can be much less
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than the total number of unknown parameters. Under such conditions, the inverse problem needs to be regularized

and a regularization matrix, which is usually highly sparse with diagonal or block-diagonal structure, is appended

below the kernel matrix.

Unfortunately, it can be computationally very challenging to apply LSQR to such tomographic matrix with a

relatively dense kernel component appended by a highly sparse damping component, because it is simultaneously

compute-, memory-, and communication-intensive. The coefficient matrix is typically very large and sparse.

For example, a modest-sized dataset of the Los Angeles Basin (ANGF) for structural seismology has a physical

domain of 496 × 768 × 50 grid points. The corresponding coefficient matrix has 261 million rows, 38 million

columns, and 5 billion non-zero values. The number of non-zeros in kernel is nearly 90% of the total while

damping takes approximately 10%. The nearly dense rows within the coefficient matrix can generate excessive

communication volume for a traditional row-based partitioning approach. Advances in structural seismology will

likely increase the order of the design matrix by a factor of three. Clearly, an algorithm that scales with both

problem size and core count is necessary.

In this paper, we address the computational challenges of using LSQR in seismic tomography which is made as

a representative of tomographic problems. We propose a partitioning strategy and a computational algorithm that

is based on the special structure of the matrix. Specially, SPLSQR contains a novel data decomposition strategy

that treats different components of the matrix separately. SPLSQR algorithm results in an algorithm with scalable

communication volume between a fixed and modest number of communication neighbors. SPLSQR algorithm

enables scalability to O(10, 000) cores for the ANGF dataset in seismic tomography.

2. Related Work

LSQR is applied in a wide range of fields that involve reconstruction of images from a series of projections. It

has been widely used in geophysical tomography to image subsurface geological structures using seismic waves,

electromagnetic waves, or Bouguer gravity anomalies, etc. In structural seismology, the coefficient matrix is

usually composed of kernel and damping component. For ray-theoretical travel-time seismic tomography, each

row of the kernel component is computed from the geometry of the ray path that connects the seismic source

and the seismic receiver, which usually results in a very sparse kernel component [3]. For full-wave seismic

tomography, each row of the kernel which represents Frechet derivative of each misfit measurement vector is

nearly dense [4, 5, 6]. The purpose of the damping is to regularize the solution of the linear system. The damping

can be computed from the inverse of the model covariance. In practice, to penalize the roughness and the norm

of the solution, a combination of the Laplacian operator implemented through finite-differencing and the identity

operator can be used as the damping component.

The LSQR method is one of the most efficient algorithms so far for solving very large linear tomography

systems, whether they are under-determined, over-determined or both [7, 2, 8]. There are several existing imple-

mentations of parallelized LSQR. Baur and Austen [9] presented a parallel implementation of LSQR by means of

repeated vector-vector operations. PETSc [10] has an optimized parallel LSQR solver. PETSc is a well-optimized

and widely-used scientific library, but it does suffer performance issues when using sparse matrices with random

non-zero structure [11]. Liu et al. [12] proposed a parallel LSQR approach for seismic tomography. They par-

titioned the matrix into blocks by row and gave an approach to compute matrix-vector multiplication in parallel

based on distributed memory. Their approach requires reduction on both vector x and y in each iteration. An MPI-

CUDA implementation of LSQR (PLSQR) is described in [13]. The matrix vector multiplication uses a transpose

free approach and requires only one reduction on the relative smaller vector x. Its major computation portions

have been ported to GPU, and considerable speedup has been achieved.

3. Algorithm Overview

Figure 1 summarizes the idea of SPLSQR algorithm based on Message Passing Interface (MPI) programming

model. The pseudo code describes the behavior of each MPI task. In particular, we describe the necessary matrix

reordering, i.e., line (01) to (04) in Section 4, data partitioning strategy, i.e., line (05) to (08) in Section 5, and the

calculation of the sparse matrix-vector multiplication, i.e., line (10) to (26), in Section 6. Communication, i.e.,
line (16) and (22), incurred during matrix-vector multiplication is detailed in Section 7.
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