
 Procedia Computer Science 18 (2013) 749 – 758

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.239

International Conference on Computational Science, ICCS 2013

High-Level Programming for Medical Imaging
on Multi-GPU Systems using the SkelCL Library

Michel Steuwer∗, Sergei Gorlatch

Department of Mathematics and Computer Science, University of Muenster, Einsteinstrasse 62, 48149 Muenster, Germany

Abstract

Application development for modern high-performance systems with Graphics Processing Units (GPUs) relies on low-level

programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs.

In this paper, we present SkelCL – a high-level programming model for systems with multiple GPUs and its implementa-

tion as a library on top of OpenCL. SkelCL provides three main enhancements to the OpenCL standard: 1) computations are

conveniently expressed using parallel patterns (skeletons); 2) memory management is simplified using parallel container data
types; 3) an automatic data (re)distribution mechanism allows for scalability when using multi-GPU systems.

We use a real-world example from the field of medical imaging to motivate the design of our programming model and we

show how application development using SkelCL is simplified without sacrificing performance: we were able to reduce the

code size in our imaging example application by 50% while introducing only a moderate runtime overhead of less than 5%.

Keywords: SkelCL, Multi-GPU Computing, Algorithmic Skeletons, LM OSEM Algorithm, Image Reconstruction

1. Introduction

Modern high-performance computer systems increasingly employ Graphics Processing Units (GPUs) and

other accelerators. The state-of-the-art application development for systems with GPUs is cumbersome and

error-prone, because GPUs are programmed using relatively low-level models like CUDA [1] or OpenCL [2].

These programming approaches require the programmer to explicitly manage GPU’s memory (including memory

(de)allocations, and data transfers to/from the system’s main memory), and to explicitly specify parallelism in

the computation. This leads to lengthy, low-level, complex and thus error-prone code. For multi-GPU systems,

programming with CUDA and OpenCL is even more complex, as both approaches require an explicit implemen-

tation of data exchange between GPUs, as well as separate management of each GPU, including low-level pointer

arithmetics and offset calculations.

In this paper, we describe the SkelCL (Skeleton Computing Language) – a high-level programming model for

parallel systems with multiple GPUs. The model is based on the OpenCL standard and extends it with three novel,

high-level mechanisms:

∗Corresponding author. Tel.: +49 251 8332744; fax: +49 251 8332742.

E-mail address: michel.steuwer@uni-muenster.de.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

750 Michel Steuwer and Sergei Gorlatch / Procedia Computer Science 18 (2013) 749 – 758

1) parallel skeletons: pre-implemented high-level patterns of parallel computation and communication which

can be customized and combined to express application-specific parallelism;

2) parallel container data types: collections of data (e. g., vectors and matrices) that are managed automatically

across all GPUs in the system;

3) data (re)distributions: an automatic mechanism for describing data distributions and re-distributions among

the GPUs of the target system.

The paper describes how the SkelCL model is used for programming a sample real-world application from the

area of medical imaging, and how the model is implemented as the SkelCL programming library, using C++. Our

focus is on programming methodology; therefore, we motivate our work using one typical imaging application

and then study it in great detail throughout the paper.

The remainder of the paper is organized as follows. In Section 2, we introduce the application example used

throughout the paper – the LM OSEM algorithm for medical image reconstruction. The application is used to

identify requirements on a high-level programming model. Section 3 introduces the SkelCL programming model

and its C++ implementation in the SkelCL library. In Section 4, we present experimental results for the LM OSEM

algorithm using SkelCL, before we compare our contributions with related work and conclude in Section 5.

2. Iterative PET Image Reconstruction and the LM OSEM Algorithm

Our running application example in this paper is the LM OSEM algorithm [3, 4] for image reconstruction used

in Positron Emission Tomography (PET). In PET, a radioactive substance is injected into a human or animal body,

which is then placed inside a PET scanner that contains several arrays of detectors. As the particles of the applied

substance decay, positrons are emitted (hence the name PET) and annihilate with nearby electrons, such that two

photons are emitted in the opposite directions (see Fig. 1). These “decay events” are registered by two opposite

detectors of the scanner which records these events in a list. Data collected by the PET scanner are then processed

by a reconstruction algorithm to obtain a resulting image.

Fig. 1. Two detectors register an event in a PET-scanner

2.1. The LM OSEM Algorithm

List-Mode Ordered Subset Expectation Maximization [3] (called LM OSEM in the sequel) is a block-iterative

algorithm for 3D image reconstruction. LM OSEM takes a set of events from a PET scanner and splits them into

s equally sized subsets. Then, for each subset S l, l ∈ 0, . . . , s − 1, the following computation is performed:

fl+1 = flcl; cl =
1

AT
N1

∑

i∈S l

(Ai)
T 1

Ai fl
. (1)

Here f ∈ Rn is a 3D image in vector form with dimensions n = (X × Y × Z), A – the so called system matrix,

element aik of row Ai is the length of intersection of the line between the two detectors of event i with voxel k of

the reconstruction image, computed with Siddon’s algorithm [5].
1

AT
N1

is the so-called normalization vector; since

it can be precomputed, we will omit it in the following. The multiplication flcl is performed element-wise. Each

subset’s computation takes its predecessor’s output image as input and produces a new, more precise image.

Download English Version:

https://daneshyari.com/en/article/490549

Download Persian Version:

https://daneshyari.com/article/490549

Daneshyari.com

https://daneshyari.com/en/article/490549
https://daneshyari.com/article/490549
https://daneshyari.com

