J. Chem. Thermodynamics 116 (2018) 248-252

Contents lists available at ScienceDirect

J. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

CrossMark

Thermodynamic properties of L-threonine

V.A. Lukyanova^a, A.I. Druzhinina^{a,*}, S.M. Pimenova^a, V.A. Ioutsi^a, A.G. Buyanovskaya^b, R.U. Takazova^b, E.V. Sagadeev^c, A.A. Gimadeev^c

^a Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia

^bA.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia

^c Physical and Colloid Chemistry Department, Kazan National Research Technological University, Karl Marx Street 68, Kazan 420015, Russia

ARTICLE INFO

Article history: Received 23 May 2017 Received in revised form 15 September 2017 Accepted 18 September 2017 Available online 20 September 2017

Keywords: L-threonine Bomb combustion calorimetry Energy of combustion Adiabatic calorimetry Heat capacity Thermodynamic functions of formation

ABSTRACT

Standard molar enthalpy of formation in the solid state at T = 298.15 K of L-threonine was derived from energy of combustion determined by static bomb combustion calorimetry. Heat capacity of L-threonine was measured by vacuum adiabatic calorimetry over the temperature range (7.37–371.97) K. Heat capacities and main thermodynamic functions in solid state were tabulated as a function of temperature from 5 K to 370 K. The entropy of formation and Gibbs energy of formation at T = 298.15 K of L-threonine in the condensed state were computed on the basis of the experimental results obtained. All results are compared with experimental values reported in the literature.

© 2017 Elsevier Ltd.

1. Introduction

L-threonine ($C_4H_9O_3N$, CAS: 72-19-5, L-Thr) is an essential amino acid, which plays an important role in human life. L-Thr is involved in the natural synthesis of protein and enzymes, supports normal functioning of the Central nervous, immune and cardio-vascular systems and also has other useful properties (positive effect on the gastrointestinal tract, stimulates brain activity, *etc.*).

The literature review showed that the experimental values of the enthalpy of formation of L-Thr [1-4] are different approximately by 30 kJ·mol⁻¹, therefore refining of this value is desirable.

The data on heat capacity, entropy of formation and free energy of formation of L-Thr in literature are absent.

This work is a continuation of our experimental determination of thermodynamic characteristics of the essential amino acids that form the primary structure of a protein [5–7]. Knowledge of accurate thermodynamic properties of amino acids is necessary for understanding the process of protein biosynthesis.

* Corresponding author. E-mail address: druzhinina@thermo.chem.msu.ru (A.I. Druzhinina).

2. Experimental

2.1. Sample

The commercial sample of L-Thr was obtained from Matrix Company. According to the certificate, the content of the basic substance was 0.993 mass fraction. The commercial sample was purified twice by recrystallization from a saturated aqueous solution (deionized water, "MilliQ") with excess isopropanol (LiCrosolv, LC–MS grade); precipitated crystals of L-Thr were dried in vacuum (~2.6 Pa) and then in a desiccator over phosphorus oxide to constant weight. According to elemental analysis, found (mass%): carbon (40.2 ± 0.2), hydrogen (7.7 ± 0.3) and nitrogen (11.8 ± 0.3). This corresponds to (0.9991 ± 0.0008) mass fractions of L-Thr in the sample. Theoretical calculation gives, respectively, (mass%): 40.33, 7.62, and 11.76. The purity of the sample L-Thr further was confirmed by the CO₂-analysis of the gaseous products of combustion (0.9999 ± 0.0002) mass fraction. Provenance and purity of L-Thr are listed in Table 1.

The molar mass of the compound (Molar Mass = 119.12 g·mol⁻¹) was calculated on based relative atomic masses recommended in [8]. The density, ρ , of L-Thr equals 1.464 g·cm⁻³ at *T* = 298.15 K from [9]. Storage of the sample L-Thr and all operations with it were carried out in a stream of dry argon.

Table 1Provenance and purity of L-threonine.

Compound	Source	Initial mass fraction purity	Purification method	Method of analysis	Final mass fraction purity
L-Thr $(C_4H_9NO_3)$	commercial	0.993	two-fold recrystallization	elemental analysis analysis of CO ₂ (g)	0.9991 0.9999

2.2. Combustion calorimetry

The energy of combustion of L-Thr was determined using a static-bomb isoperibolic calorimeter; calorimeter apparatus and the technique determining the energy of combustion were similar to that described in [5,10]. The energy equivalent of calorimeter, ε , was determined by combustion of thermochemical standard benzoic acid (K-1 brand, D.I. Mendeleev Research Institute of Metrology) with purity is 99.997 mol%. Its energy of combustion in certified conditions was $\Delta_b u = (-26432.5) J \cdot g^{-1}$ at T = 298.15 K (combined expanded uncertainty of $\Delta_b u$ is $U_c(\Delta_b u) = 1.9 J \cdot g^{-1}$; standard uncertainty of T is u(T) = 0.05 K). Temperature rise ~1 K was measured by a copper resistance thermometer and a bridge scheme with sensitivity of ~5·10⁻⁵ K.

Sample L-Thr (\sim 0.50 g) was pressed into tablet on a hydraulic press, sealed into a Terylene-film bag and burned with a Tablet of benzoic acid to provide a temperature rise \sim 1 K.

Weighing was carried out with a precision of $\pm 2 \times 10^{-3}$ mg on a Mettler balance (Type M58 A Max. Bel. 20 g.). At the bottom of the bomb was placed 2 mL of distilled water to dissolve the NO₂(g), formed in the experiment. The bomb was charged with purified oxygen to initial pressure 3.04 MPa; the initial temperature of the experiments was 298.15 K and does not differ from it more than ± 0.03 K. Provision for ignition was made by means of a platinum wire (diameter of 0.1 mm) heated by the discharge of a capacitor.

In the products of the combustion determined CO₂ (g) by the Rossini method [11], and controlled the absence of CO (g), using indicator tubes (TU. 12.43.20-76, sensitivity 6×10^{-6} g CO). Traces

of soot have been found in separate experiments ($N_{\rm e}$ 2, 5, 8, 9 in Table 2) and appropriate corrections were made. The results of CO₂ analysis (0.9999 ± 0.0002) mass fraction indicate the completeness of combustion of L-threonine and high purity of the investigated sample. The content of HNO₃ in the solution was determined by titration of washing waters by ~0.1 mol·dm⁻³ of NaOH (aq). The energy of combustion of L-Thr was determined from nine combustion experiments. Calculations of the combustion energy are based on the sample masses. The specific combustion energy, $\Delta_c u^o$, was computed using the following formula:

$$-\Delta_{c}u = \left[\left(\varepsilon \Delta R_{corr} - q(b.a.)_{-}q(f) - q(\mathrm{HNO}_{3}) + q(s) - q(\mathrm{st})\right)\right] \cdot m^{-1}$$
(1)

The results are shown in Table 2.

2.3. Adiabatic calorimetry

The heat capacity of the L-Thr was measured in a fully automated vacuum adiabatic calorimeter combined with a computermeasuring system (Termis, Moscow). The detailed description of the device configuration and calorimetric technique is reported in [15,16]. The calorimetric cell consists of a cylinder titanium container ($V \approx 1 \text{ cm}^{3}$), inserted into a copper sleeve with a heater ($R \approx 300 \Omega$), and an adiabatic shell. The temperature of the calorimeter was measured by a (rhodium + iron) resistance thermometer ($R_{273,1} \sim 51 \Omega$), which was calibrated in ITS-90 [17] over the temperature range from (5 to 373) K. The temperature difference between the container and adiabatic shell was measured by

Table 2 Combustion energy of L-threonine at T = 298.15 K (Molar Mass = 119.12 g·mol⁻¹; $\rho = 1.464$ g·cm⁻³ [9]; $P^{o} = 101.3$ kPa)^a.

№ m ^b /g 1 0.495148 2 0.503027 3 0.517502 4 0.512111									
2 0.503027 3 0.517502	$\Delta R_{corr}^{c}/\Omega$	$\epsilon' \cdot \Delta R_{corr}^{d}/J$	q(b.a) ^e /J	q(f) ^f /J	q(HNO ₃) ^g /J	q(s) ^h /J	q(st) ⁱ /J	[CO ₂] ^j	$(-\Delta_c u^\circ)^k/(J \cdot g^{-1})$
3 0.517502	0.238193	13900.0	4338.8	852.6	25.2	0	9.0	0.9997	17518.8
	0.242773	14167.4	4667.5	658.3	26.8	3.3	9.1	-	17512.0
4 0 5 1 6 1 4 1	0.239615	13983.1	4339.6	540.0	27.9	0	8.9	-	17520.1
4 0.516141	0.239809	13979.5	4321.4	581.3	28.8	0	8.8	0.9999	17513.0
5 0.513765	0.236756	13801.5	4190.9	572.7	28.2	1.8	8.6	0.9999	17523.4
6 0.517720	0.237962	13871.8	4192.0	579.0	30.2	0	8.6	1.0001	17503.7
7 0.511489	0.232972	13580.9	4027.7	559.3	25.0	0	8.5	1.0001	17518.3
8 0.511377	0.233339	13602.3	4042.1	572.2	26.1	3.2	8.5	-	17514.7
9 0.514762	0.236535	13788.6	4167.0	577.2	25.4	9.2	8.7	0.9997	17521.7
Mean								0.9999 ¹	17516.2 ^m

^a Standard uncertainties *u* are u(T) = 0.01K, *u* (Molar Mass) = 0.02 g·mol⁻¹, $u(P^{o}) = 0.5$ kPa.

^b m is mass of the sample; it was weighed with a precision of $\pm 2 \cdot 10^{-3}$ mg on a Mettler balance (Type M58A Max. Bel. 20g.), and was reduced to a vacuum.

 ΔR_{corr} is the increase of the thermometer resistance corrected for heat exchange; standard uncertainty u is $u(\Delta R_{corr}) = 1.10^{-5} \Omega$.

^d $\epsilon' \cdot \Delta R_{corr}$ is the total energy evolved; where ϵ' is the energy equivalent of the calorimeter (N_2 1–3: ϵ' = 58260.5 J· Ω^{-1} , N_2 4–9: ϵ' = 58198.3 J· Ω^{-1}) corrected for the difference between the heat capacity of the compounds contained in the bomb after combustion of the studied compound and of benzoic acid; combined expanded uncertainties U_c are $U_c(\epsilon')$ (N_2 1–3) = 7.7 J· Ω^{-1} ; $U_c(\epsilon')$ (N_2 4–9) = 7.5 J· Ω^{-1} (0.95 level of confidence).

^e q(b.a.) is the correction for the energy of combustion of benzoic acid, calculated from (-26412.0) J·g⁻¹, which is obtained from certificate value by introducing amendment for reduction to the standard state [11]; combined expanded uncertainty U_c is U_c (q(b.a)) = 0.3 J (0.95 level of confidence).

^f q(f) is the correction for the energy of combustion of Terylene-film.; combined expanded uncertainty U_c is $U_c(q(f)) = 0.2 \text{ J}$ (0.95 level of confidence). The energy of combustion of Terylene-film is (-22928) J g⁻¹ [12].

 g q(HNO₃) is the correction for the energy formation of solution HNO₃(aq) from N₂(g), O₂(g) and H₂O(l) (based on –59.1 kJ·mol⁻¹ the molar energy of formation of aqueous nitric acid [13,14]); combined expanded uncertainty U_c is $U_c(q(HNO_3)) = 0.002$ J (0.95 level of confidence).

^h q(s) is the correction for the presence of soot in the crucible (the energy of combustion of soot $-32763 \text{ J} \cdot \text{g}^{-1}$ is calculated from the standard enthalpy of formation of CO₂ [13]); combined expanded uncertainty U_c is $U_c(q(s)) = 0.003 \text{ J}$ (0.95 level of confidence).

ⁱ q(st) is the correction to standard state [11]; standard uncertainty u is u(q(st)) = 0.08 J.

^j [CO₂] is the ratio of the mass of CO₂ determined experimentally to that calculated theoretically.

^k $(-\Delta_c u^\circ)$ is the standard specific energy of combustion.

^m The mean value $(-\Delta_c u^\circ)$, combined expanded uncertainty U_c is $U_c(-\Delta_c u^\circ) = 4.7 \text{ J} \cdot \text{g}^{-1}$ (0.95 level of confidence).

¹ The mean value [CO₂], combined expanded uncertainty U_c is $U_c([CO_2]) = 2 \cdot 10^{-4}$ (0.95 level of confidence).

Download English Version:

https://daneshyari.com/en/article/4907216

Download Persian Version:

https://daneshyari.com/article/4907216

Daneshyari.com