Accepted Manuscript

(Solid + liquid) phase equilibrium for the ternary system (K_2CO_3 - Na_2CO_3 - H_2O) at T = (323.15, 343.15, and 363.15) K

Congcong Yin, Meitang Liu, Jing Yang, Hongwen Ma, Zheng Luo


PII: S0021-9614(17)30001-0

DOI: http://dx.doi.org/10.1016/j.jct.2017.01.001

Reference: YJCHT 4949

To appear in: J. Chem. Thermodynamics

Received Date: 25 September 2016 Revised Date: 31 December 2016 Accepted Date: 2 January 2017

Please cite this article as: C. Yin, M. Liu, J. Yang, H. Ma, Z. Luo, (Solid + liquid) phase equilibrium for the ternary system (K_2CO_3 - Na_2CO_3 - H_2O) at T = (323.15, 343.15, and 363.15) K, J. Chem. Thermodynamics (2017), doi: http://dx.doi.org/10.1016/j.jct.2017.01.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

(Solid + liquid) phase equilibrium for the ternary system $(K_2CO_3-Na_2CO_3-H_2O)$ at T=(323.15,343.15, and 363.15) K

Congcong Yin^{a,c}, Meitang Liu^{a,*}, Jing Yang^{a,b}, Hongwen Ma^{a,b}, Zheng Luo^{a,c}

Abstract: In order to provide a theoretical basis and fundamental data for industrial utilization of insoluble potassium rocks to produce potassium salts, the phase equilibrium of the ternary system K₂CO₃-Na₂CO₃-H₂O at 323.15 K, 343.15 K and 363.15 K was determined using the isothermal dissolution equilibrium method. According to the experimental results of salt solubility, the phase diagrams were constructed and the crystallization zones are discussed in detail. All of the solubility isotherms at 323.15 K, 343.15 K and 363.15 K consist of two invariant points, three univariant curves and three crystallization fields corresponding to Na₂CO₃·H₂O, K₂CO₃·Na₂CO₃ and K₂CO₃·1.5H₂O, respectively. The densities of the liquid phase of the ternary systems were investigated as well.

Keywords: Phase diagram, Solubility, Potassium carbonate, Sodium carbonate, Thermodynamic properties

1. Introduction

Potassium is an inorganic chemical raw material. The soluble potassium resource is the main source of potassium salts [1]. However, the distribution of soluble potassium resources is in serious imbalance all over the world, a few countries of the northern hemisphere (Canada, Russia, Belarus, and Germany) account for 93% of the world's total reserves [1, 2].

China depends more than 50% on import for potassium salts due to the lack of soluble potassium resources. However, the potassium containing rocks with the principal mineral of K-feldspar exist throughout the country and by using these valuable rocks to produce potassium salts, one can alleviate severe shortages of potash resources in China. We have done a series of investigations about comprehensive utilization of potassic rocks [3-8]. K-feldspar can be decomposed in the media of sodium hydroxide via hydrothermal treatment. The filtered liquors are

^a School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China

^b Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Wastes, China University of Geosciences, Beijing 100083, China

^c Bluesky Technology Corporation, Beijing 100083, China

Download English Version:

https://daneshyari.com/en/article/4907393

Download Persian Version:

https://daneshyari.com/article/4907393

<u>Daneshyari.com</u>