Accepted Manuscript

A new calcium germanate-graphene nanocomposite modified electrode as efficient electrochemical sensor for determination of daphnetin

Yamin Fu, Lu Wang, Di Huang, Lina Zou, Baoxian Ye

PII:	S1572-6657(17)30512-X
DOI:	doi: 10.1016/j.jelechem.2017.07.027
Reference:	JEAC 3415
To appear in:	Journal of Electroanalytical Chemistry
Received date:	19 May 2017
Revised date:	22 June 2017
Accepted date:	15 July 2017

Please cite this article as: Yamin Fu, Lu Wang, Di Huang, Lina Zou, Baoxian Ye, A new calcium germanate-graphene nanocomposite modified electrode as efficient electrochemical sensor for determination of daphnetin, *Journal of Electroanalytical Chemistry* (2017), doi: 10.1016/j.jelechem.2017.07.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A new calcium germanate-graphene nanocomposite modified

electrode as efficient electrochemical sensor for determination of

daphnetin

Yamin Fu^a, Lu Wang^{a,b}, Di Huang^a, Lina Zou^{a,*}, Baoxian Ye^{a,*}

a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P R China.

b Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, PR China.

* Corresponding author. Tel.: +86 0371 67781757; fax: +86 0371 67763654.

* E-mail: yebx@zzu.edu.cn

Abstract

A novel electrochemical daphnetin sensor was developed by employing a nanocomposite of calcium germanate-graphene (Ca₂GeO₄-GR) as an effective electrode material. In this strategy, Ca₂GeO₄ nanowires could be uniformly distributed on the GR surface with average diameter of about 30-60 nm as exhibited by transmission electron microscopy (TEM). The fabricated sensor (Ca₂GeO₄-GR/GCE) exhibited excellent current response towards daphnetin with linear range of 2.0×10^{-8} mol L⁻¹ to 9.0×10^{-7} mol L⁻¹ and detection limit of 6×10^{-9} mol L⁻¹ (S/N=3). In addition, the sensor also demonstrated strong anti-interference properties in the presence of some metal ions and organic compounds. The proposed method was successfully applied for determination of daphnetin in traditional Chinese medicine (Zushima) and Zushima tablets with satisfactory results.

Key words: Daphnetin; Ca₂GeO₄; Graphene; Electrochemical sensor;

Download English Version:

https://daneshyari.com/en/article/4907632

Download Persian Version:

https://daneshyari.com/article/4907632

Daneshyari.com