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A B S T R A C T

Cyclic voltammetry is typically performed using triangular waveforms, however, complications inevitably arise
from the discontinuous nature of the differentiated triangular wave: As the capacitive current contributions are
proportional to the derivative of the applied electrode potential, the measured current is (at least theoretically)
discontinuous, which experimentally manifests in perturbed voltammetric data following minima and maxima in
the applied triangular wave that is mostly due to unavoidable parasitic capacitances. We herein investigate
voltammetry using alternative waveforms which on the one hand circumvent such difficulties and on the other
exhibit unique features in the voltammetric response. We show that these features immediately reveal the formal
potential of an investigated reaction that is readily available without any need for further data processing, and
enable a new and easy-to-use route to determine formal potentials.

1. Introduction

For decades cyclic voltammetry [1–4] has been the key technique in
electrochemistry and still today remains an integral part of most elec-
trochemical and electro-analytical studies published. In a typical cyclic
voltammetry experiment, an electrode is set in contact with an elec-
trolyte solution containing an analyte of interest. The surface is then
biased with respect to the solution, while a triangular potential wave E
(t) is applied to the electrode relative to a reference electrode:
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where σ is the scan rate and t1/2 is half of the duration of one cycle.
During the potential scan, the electrode current, the current through the
solid–liquid interface, is monitored and enables diverse insights into the
nature of the reaction at the electrode surface. As a vast amount of
accessible and easy-to-use theory exists [5], numerous physical quan-
tities can be readily extracted from voltammetric data including analyte
concentrations, diffusion constants, and rate constants to just name a
few.

Aside from the great opportunities offered by cyclic voltammetry
using the triangular wave (Eq. (1)), experimental challenges inevitably
result from the discontinuity of the potential's first derivative with re-
spect to time. As capacitive contributions Ic to the measured current
(I= Ic+ IF) are proportional to the first derivative of the applied

electrode potential E(t) with respect to time:

∝I d E t( ).c t (2)

Ic is discontinuous, which entails perturbed voltammetric data fol-
lowing turning points at t=n ⋅ t1/2, n ∈ℕ0. The perturbations are mostly
due to parasitic capacitances present in the measurement set-up, which
may in a complex fashion depend on parameters such as the scan rate,
potential, and current magnitude, and hence can typically not be dis-
tinguished from actual voltammetric data. A more detailed discussion
on capacitive effects can be found in recent literature [6]. While such
perturbations are of course present at any time of the experiment and
generally affect all data, their influence may however be much larger at
discontinuities in the current where they pose a much greater challenge
to the acquisition and quantitative analysis of experimental results and
which should therefore desirably be avoided.

In this work, we present an alternative approach to cyclic voltam-
metry using a slightly different waveform to the above triangular wave
to prevent discontinuities in the measured electrode current. Related
voltammetry is investigated in much detail and an expression for the
height of the first peak is established akin to the well-known Randles-
Ševčík equation [7,8]. Our analysis further reveals that the proposed
method gives rise to unique voltammetric features that can be exploited
to determine the formal potential of a reaction at an ease and clarity far
beyond means offered by triangular wave cyclic voltammetry.
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2. Theory

In the following section, the proposed method of an alternative non-
triangular waveform is explained and a theoretical model introduced.
We further introduce practical dimensionless coordinates and two dif-
ferent computational approaches, finite difference simulation and
computation based on fractional calculus, which complement each
other.

2.1. Theoretical model

We investigate a simple one-electron electrochemically-reversible
reduction reaction of A to B at a planar macroelectrode under diffusion-
only conditions, where both species have equal diffusion coefficients:

+ ⇌−A e B. (3)

The system is assumed to be fully-reversible in which the electrode
kinetics are much faster in comparison to the mass transport resulting
in a Nernstian equilibrium at the electrode surface: [2,9,10]
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where E is again the applied potential, Ef
0 is the formal potential of the

A/B couple, and cA(x=0) and cB(x=0) are the surface concentrations
of species A and B, respectively. In this system, only diffusion is con-
sidered as means of mass transport of the analytes to the electrode
surface with no convection and the presence of a sufficiently high
concentration of supporting electrolyte is assumed so that migration
can be neglected [11–14]. It is, however, important to note that with
sufficiently long scan duration times, convection may affect experi-
mental results [2,3,15-17]. The transport of analytes is hence described
via the one-dimensional diffusion equation given by Fick's second law,
which relates the change in concentration, c, over space, x, with time,
t: [18,19]
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where j is the species of interest and D is the diffusion coefficient of the
said species. In order to solve the diffusion equation, boundary condi-
tions are established for the case where only species A is present in the
bulk solution [2,18], and the concentration of both A and B is uniform
in space:

≤ = =t x c c c0, all , *, 0.A A B (6)

As t increases, both cA and cB change, however, at a distant sig-
nificantly far from the electrode, no reaction is observed and the so-
lution remains the same as the initial condition:

> → ∞ = =t x c c c0, , *, 0.A A B (7)

Since both species have the same diffusion coefficient and by con-
servation of mass, the amount of A consumed at the electrode equals the
amount of B gained:
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and, due to the symmetry of all boundary conditions with respect to the
exchange of A and B, the following condition holds at any point in
space:

+ − =c x t c x t c( , ) ( , ) * 0.A B A (9)

2.2. Proposed method

In contrast to a triangular wave, the here-introduced method uses a
cosine potential wave with varying powers, while the scanned potential
window is shifted between different experiments. The cosine potential

wave equation is given as:
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where A is the amplitude of the wave in volts, a is an auxiliary coeffi-
cient defined as ⋅ ⋅ ⋅νD
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in which ϵ is the radius of the electrode, D

is the diffusion coefficient of the species of interest, F is the Faraday
constant, R is the gas constant, T is the temperature, and νavg is the
average scan rate measured in volts per second. The other parameters, i,
is the time step, Δt is the difference between each time step, n is the
power of the function, and Eshift is the offset of the wave. It is herein
noted that although sine waves and cosine waves are used in AC vol-
tammetry, this paper focuses on the use of cosine waves in cyclic vol-
tammetry.

As can be seen in Fig. 1, the duration time is kept the same between
the triangular and non-triangular potential waves but the instantaneous
scan rate at any potential differs depending on the applied potential for
non-triangular waveforms. In addition, the figure reveals that there are
no discontinuities in the first temporal derivative of the potential and
the above-bespoken perturbations arising from parasitic capacitances
will not be observed in experimental data. We further note that a pla-
teau is observed for the cosine square wave at the midpoint of the ap-
plied potential range, which moves up or down depending on the po-
tential window shift, Eshift.

2.3. Dimensionless coordinates

For simplicity and both easier and general application of our results
to various experimental conditions, dimensionless parameters [18] are
used in the following manuscript, while conversion factors are shown in
Table 1. Given these expressions, the cosine equation can now be ex-
pressed in terms of dimensionless parameters where A is the amplitude

Fig. 1. Triangular, cosine, and cosine square potential waves centred at 0 with an am-
plitude of 1.

Table 1
Dimensionless parameters [18].

Parameter Normalization

Concentration =Cj
cj
cA*

Diffusion coefficient =dj
Dj
DA

Spatial coordinate =X x
ϵ

Time =τ DAt
ϵ2

Potential = −( )θ E E( )F
RT f
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