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A B S T R A C T

In a number of transient electroanalytical experiments (such as, in particular, the potential step chronoampero-
metry) one expects current-time responses having a singularity at time t=0. A reliable simulation of such
singular responses is a difficult task. Conventional simulation techniques fail to provide accurate results close to
the singularity. A recent extension [L. K. Bieniasz, J. Comput. Appl. Math. 323 (2017) 136] of the adaptive Huber
method for solving Volterra integral equations (IEs) is shown to overcome this difficulty in cases when the
current behaves like t−1/2 for t → 0. The method requires an availability of highly accurate approximants for
computing certain integrals of the kernel functions occurring in the IEs. Relevant approximants are elaborated
for several most important kernel functions specific of one-dimensional diffusion, and one kernel function for
two-dimensional diffusion. The resulting algorithm is tested on two examples of single IEs describing
chronoamperometry and cyclic voltammetry for a single reversible charge transfer, and one example of an IE
system describing chronoamperometry for an ErevErev mechanism. Singular transients are simulated automati-
cally with a prescribed accuracy, even for t arbitrarily close to the singularity.

1. Introduction

In a variety of controlled-potential transient electroanalytical
experiments [1] one expects theoretically a singularity of the current-
time response i(t) at the initial time moment t=0. Such temporal
singularities typically occur in the presence of reversible (Nernstian)
heterogeneous charge transfer reactions, when there is a discontinuity
at t=0, between initial and boundary conditions accompanying partial
differential equations that describe a given experiment. Hence, the
singularities are most pronounced in the case of potential step
chronoamperometric experiments [1]. In other electroanalytical experi-
ments, such as, in particular, the popular linear potential sweep or
cyclic voltammetric experiments [1], the singularities are also fre-
quently present formally, even though they tend to be ignored by
modellers, in cases when they are unimportant for the analysis of
experimental data.

Under conditions of purely diffusional transport in the absence of
homogeneous reactions, the singular current-time responses behave
asymptotically like i(t) ∼ t−1/2 when t → 0. This behaviour was
revealed, probably for the first time, by Cottrell, in his seminal analysis
of chronoamperometry [2]. Later on, the behaviour was proven
theoretically in a general way for electrodes of arbitrary geometry [3,4],
and confirmed in dozens of studies devoted to particular electrode

arrangements. There is also a number of theoretical papers (see, for
example, Refs. [5–9]) showing an analogous behaviour for various
homogeneous reaction-diffusion systems (although a general proof does
not appear available). Further instances of the Cottrell-type singular
transients were discovered in systems with migration-diffusion trans-
port [10–13].

A reliable digital simulation [14] of singular current-time responses
is a difficult matter. Conventional simulation methods by finite
differences, finite elements, or other techniques for the direct numerical
solution of partial differential equations, are widely used for this
purpose. However, it is probably not commonly realised that it is
mathematically not legal to use such methods at the singularity at t=0.
This is because most of these methods require, for convergence, an
appropriate regularity of the solutions, which is absent at t=0. As a
consequence, such simulations are grossly inaccurate close to t=0.
Readers interested in the magnitudes of such errors can consult Fig. 2 in
Ref. [15] or Fig. 4 in Ref. [16], from which it is seen that errors of the
order of 10%, 100%, and even 1000%, are well possible. The concrete
values of the initial errors depend on the simulation method, the
selection of discretisation grids, and the geometry of the diffusion field
(but the errors occur under all kinds of diffusion conditions). The fact
that numerical results obtained in such simulations for t>0 are not
entirely useless, results from the relatively fast damping of the initial
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errors. However, the damping requires several (possibly many) discrete
time steppings to be performed. Therefore, the use of nonuniform
temporal and/or spatial grids, or adaptive grids (with temporal grid
nodes concentrated near t=0), can improve the simulation of the
singular transients at t>0 (see, for example, Refs. [17–19]), although
it cannot reduce the errors at nodes closest to t=0. In certain cases one
can eliminate the singularities from numerical simulations by using
analytical solutions for simplified systems [20,21], if only such
analytical solutions are available.

In the present paper we shall demonstrate that the above difficulties
can be avoided by an appropriate use of the integral equation (IE)
method [22]. We shall describe a new simulation approach to singular
transients, employing a specially dedicated recent extension [23] of the
adaptive IE solution technique described in Refs. [24–42]. The techni-
que is based on the Huber method [43] for one-dimensional Volterra
IEs (with either nonsingular or weakly singular kernels), and it provides
automatically solutions possessing a desired accuracy. The approach
described here applies to one-dimensional diffusion transport without
homogeneous reactions (with the exception of one example of two-
dimensional diffusion). Further generalisation of the approach, to one-
dimensional diffusion coupled with first order homogeneous reactions,
is possible, but it requires an additional work that exceeds the scope of
this study. The latter generalisation is planned to be investigated and
described separately.

There have not been many former attempts to model singular
transients by means of the IEs. Some examples, corresponding to the
one-dimensional diffusion transport without homogeneous reactions,
are available in Refs. [44–47]. In all these examples the authors tried to
solve the IEs analytically, rather than numerically, possibly due in part
to the lack of a suitable numerical method. However, analytical
solutions may not always be obtainable. As we shall see, the present
numerical method is a viable, powerful, and more general alternative to
analytical solutions.

2. The adaptive Huber method for singular transients

As was described in Refs. [24–42], the adaptive Huber method is
designed for solving generally nonlinear systems of Volterra IEs, that
can be written in the form:

F U Yt t t 0( , ( ), ( )) = . (1)

In Eq. (1) F(⋅)=[F1(⋅), …, FM(⋅)]T is a vector of M functions represent-
ing the individual IEs, 0 denotes the zero vector, U(t)=[U1(t), …,
UM(t)]T is a vector ofM unknown functions of t, and Y (t)=[Y 1(t),…, Y
I(t)]T is a vector of I integrals:

K∫Y t t τ U τ τ( ) = ( , ) ( ) dj

t

κ μ

0 (2)

with j=1,…, I. In Eq. (2)K t τ( , )κ with κ=κ(j)=1,…, L denotes one of
L possible kernels, and Uμ(t) with μ=μ(j)=1, …, M is one of the
unknowns U(t) (the one associated with the jth integral).

According to the method, solutions U(t) are approximated by linear
splines over a grid of dynamically selected discrete nodes tn (n=0, 1,
…) along the t axis, with local grid step sizes hn= tn− tn−1.
Consequently, integrals Y (t) are approximated by product-integration
trapezium quadratures, with coefficients resulting from the integration
of the splines. In this way one obtains systems of nonlinear algebraic
equations, which are solved numerically for the approximations Un to U
(tn) at every successive node tn. Apart from determining approximate
solutions, the method calculates estimates of their local errors. The
estimates are used for deciding whether a discrete solution obtained
possesses a requested accuracy, or has to be recalculated using a
reduced step size hn. They also serve for predicting subsequent step
sizes.

In the spirit of the so-called product-integration methods for IEs, the

above calculation of approximate solutions and their error estimates
requires an availability of analytical formulae for the moment integrals
of the kernel functions K t τ( , )κ :

K∫ t τ τ τ( , ) d
t

κ
m

0 (3)

with m=0, 1, 2. Alternatively, in cases when such formulae do not
exist, highly accurate approximants for the moment integrals must be
developed (throughout this paper we use the phrase “highly accurate”
to denote quantities, the relative error of which is comparable to, or
even lower than the error of machine representation of double precision
variables, which is about 10−16 according to the IEEE 754 stan-
dard [48]). This is required if we want the convergence of the method
to be dependent primarily on quadrature errors and not to be affected
by an inaccurate representation of the moment integrals. Relevant
approximants have been elaborated for several kernel functions often
encountered in electroanalytical modelling [24–42].

The local linearisation of the solutions, and error estimation based
on truncated Taylor expansions, imply that the continuity of U(t) for t
≥ 0 and the existence of at least two derivatives of U(t) with respect to
t, are required by the method described in Refs. [24–42] (although the
method was found to operate satisfactorily also when the solution is
continuous but not differentiable at t=0). However, the method of
Refs. [24–42] could not calculate singular solutions. This deficiency
was eliminated in the recent work [23], by assuming that U(t) can be
decomposed into the sum:

U U Ut t t( ) = ( ) + ( ).∼ (4)

In Eq. (4) U t c t c t( ) = [ , …, ]∼
M1

−1/2 −1/2 T represents singular solution
components, with c=[c1, …, cM] T denoting a vector of unknown
coefficients, and U t( ) represents nonsingular solution components
(possessing at least two derivatives for all t ≥ 0, with a possible
exception of t=0, where U t( ) must be bounded). The decomposition
(4) of U(t) implies an analogous decomposition of Y (t):

Y Y Yt t t( ) = ( ) + ( ).∼ (5)

The elements of Y t( ) (for j=1, …, I) are given by the formulae
analogous to Eq. (2):

K∫Y t t τ U τ τ( ) = ( , ) ( ) d ,j

t

κ μ

0 (6)

whereas Y t( )∼ can be expressed as the vector

Y t c Z t c Z t( ) = [ ( ), …, ( )] ,∼ ∼ ∼
μ κ μ I κ I(1) (1) ( ) ( )

T (7)

in which Z t( )∼
κ (for κ=1, …, L) are integrals characteristic of the

various kernels:

K∫Z t t τ τ τ( ) = ( , ) d .∼
κ

t

κ

0

−1/2

(8)

Under a number of rather straightforward assumptions [23] con-
cerning the functions F(⋅), one can determine coefficients c, and
discrete nonsingular solution components un (together with their error
estimates) numerically from the IEs. One important assumption is that
the explicit dependence of F(⋅) on U(t) must vanish in the limit of t → 0.
In the electrochemical context this assumption can be satisfied by
requiring that quasi-reversible and irreversible heterogenous reactions
do not contribute in any way to the IEs when t → 0, which is consistent
with the wisdom that for such reactions one does not expect temporal
singularities of U(t). Coefficients c can be determined almost exactly,
simultaneously with the initial discrete solutions u0 and u1 (throughout
this paper, we use the phrase “almost exact” to denote quantities, the
error of which consists only of machine errors resulting from the finite
precision arithmetic on computers). Once c is known, the determination
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