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A B S T R A C T

The mathematical problem corresponding to a one-electron reversible electron transfer at a rotating disk elec-
trode is solved under transient and steady state conditions by using the homotopy perturbation method.
Analytical solutions for the time-dependent and stationary concentration profiles, current response and diffusion
layer are deduced for finite values of the Schmidt number. The solutions enable us to obtain the response in
chronoamperometry, normal pulse voltammetry and steady state voltammetry. The analytical results are as-
sessed by comparison with previous analytical solutions for limiting cases as well as with numerical simulations,
finding a satisfactory agreement.

1. Introduction

Controlled enhancement of the mass transport rate in electro-
chemical experiments can be achieved by using hydrodynamic methods
or microelectrodes. In the former case, mass transport conditions can be
varied conveniently to resolve (electro)chemical phenomena of dif-
ferent kinetics: electron transfers, adsorption/desorption processes,
coupled chemical reactions, etc. Different hydrodynamic methods have
been developed over years (rotating disc/ring, channel, wall-jet and
dropping mercury electrodes) and applied to the study of the most
frequent reaction mechanisms: EC, EC′, ECE/DISP, etc. [1–9]. The ro-
tating disc electrode (RDE) is still the most popular method [10] to
which much theoretical work has been devoted as evidenced in Table
S1. This includes both the derivation of analytical solutions and the use
of numerical methods (see SI), the present work developing within the
former context.

Since Levich's seminal work [11], different analytical solutions for
the current response at RDEs have been deduced. For steady state
conditions, Levich [11] obtained his well-known expression for the RDE
limiting current under the assumption of infinite Schmidt numbers (Sc);
this limitation was overcome later by several authors that reported
solutions valid for finite Sc-values (Newman [12], Gregory et al. [13],
Montella et al. [8], Rajendran et al. [14]). The (semi)analytical theo-
retical treatment of several reactions mechanisms at an RDE under
steady state conditions are also found in the literature: ECE [15], EC2

[16], DISP [17],… Theoretical works under non-steady state conditions
are more scarce, although transient measurements are helpful for

mechanistic deductions and quantitative kinetic studies. Thus, for in-
finite Sc-values, several expressions for the transient limiting current
are available (Bruckenstein [18], Siver [19], Newman [20], Kontturi
[5], …).

In this communication analytical expressions for the concentration
profiles, diffusion layer and current-potential response of simple elec-
tron transfers at RDEs are derived using the homotopy perturbation
method (HPM) [21]. The theoretical solutions cover both transient and
steady state conditions as well as finite Sc-numbers (Sc > 100).

2. Mathematical formulation of the boundary value problem

In general, the convection-diffusion equation can be used to de-
scribe the transfer of many physical quantities, such as particles and
energy, as long as the transfer occurs only due to two processes: con-
vection and diffusion. The general form of the convection-diffusion
equation is

∂
∂

= ∇ − ∇c
t

D c v c.2
(1)

where c denotes the concentration of the diffusing species, D is the
diffusion coefficient, v is the velocity of the electrolyte and ∇2 is the
Laplacian operator.

For a heterogeneous electron transfer at an RDE,

+ ↔O e R (2)

Eq. (1) in one dimensional form can be simplified to [1]
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where ci is the concentration profiles of the oxidized and reduced forms
and Di is the corresponding diffusion coefficient and vz the component
of the fluid velocity normal to the RDE surface that can be described by
the Cochran series solution of von Kármán equations [1,22,23]
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with v being the kinematic viscosity of the electrolyte, and Ω the an-
gular velocity of the electrode. By considering the first two terms in Eq.
(4), an accurate description is achieved for most solvents (Schmidt
number ≥ 100 [8,9]) (see below). Thus, taking the first two terms in
the Cochran expansion into Eq. (3) yields,
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subject to the following boundary conditions where it is assumed that
only the oxidized species is initially present, the electron transfer is
reversible and the diffusion coefficient of the two electroactive species
is equal [1]:
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with:

= − ′η F
RT

E E( )0
(7)

where E is the applied potential, E0
′
the formal potential and F, R and T

have their usual meanings [1–3]. Once the above problem is solved and
the concentrations profiles are known, the current response (i(t)) is
calculated from
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Provided that the diffusion coefficients of the two electroactive
species are equal (DO=DR=D), it can be demonstrated that the total
concentration of electroactive species remains constant at any time of
the experiment and in any region of the solution, that is: cO(z, t)
+cR(z, t)=cb. Combining this result with the Nernstian condition in
Eq. (6), the surface concentrations of the electroactive species are im-
mediately obtained:
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Note that this also enables us to de-couple the mathematical pro-
blems corresponding to species O and R (see below).

To proceed with the resolution of the problem, the following di-
mensionless parameters are introduced:
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where a=0.51023ν−1/2Ω3/2, τ is the dimensionless time, ζ the di-
mensionless distance and θi the dimensionless concentration of the
electroactive species i. Taking into account the definitions in Eq. (10),
now Eq. (5) becomes into:
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and the initial and boundary condition into:
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where k is a function of the Schmidt number (Sc) defined as:
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Given that typical Sc values are larger than 100, then typical k-va-
lues are below 0.18.

The dimensionless current is given by:
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and the dimensionless thickness of the linear ‘diffusion’ layer by:
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2.1. Analytical expressions for the transient concentration profile and the
current response using the homotopy perturbation method (HPM)

The homotopy perturbation method (HPM) has been proven very
powerful in a variety of problems in physics and engineering [24–26].
This method is a combination of homotopy in topology and perturba-
tion techniques in functional analysis and in a new approach of the
HPM [27] only a few iterations are needed to find an asymptotic so-
lution.

The problem given by Eqs. (11)–(12) is solved using the HPM (de-
tails given in the Appendix) for the application of a potential pulse
under limiting current conditions (i.e., E < < E0

′
so that θO(0)=0).

The following analytical expression for the dimensionless concentration
profile of the oxidized species is obtained:
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where θ2(ζ,τ) is the term obtained in the third iteration (given in SI3).
Note that the concentration profile of the reduced species can be im-
mediately calculated from Eq. (16) taking into account that: θO(ζ,τ)
+θR(ζ,τ)=1.

From Eqs.(14) and (16), the following expression for the transient
current response under limiting current conditions (ψlim) is deduced:
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that reduces to the Cottrell equation in the limit τ→0 (i.e., t→0 and/or
Ω→0): =ψ τ( ) πτlim

1 . Also, the thickness of the linear ‘diffusion’ layer
can be calculated from Eq. (17) as follows:
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When the diffusion coefficients of the electroactive species are equal
and there are no chemical or electrochemical kinetic limitations, the
current response of any electron transfer mechanism upon the appli-
cation of a potential pulse only differs from the limiting current value
by a potential-dependent factor, the form of which depends on the re-
action scheme. In the case of one-electron transfers, this factor is
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